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Abstract—An asynchronous sequential logic spiking
neuron is an artificial neuron model that can exhibit various
bifurcations and nonlinear responses to stimulation inputs.
In this paper, we introduce a pulse-coupled system of the
asynchronous sequential logic spiking neurons. It is shown
that the coupled system can exhibit various periodic islands
and their synchronization phenomena.

1. Introduction

Designs of artificial spiking neuron models and their
pulse-coupled networks that are suitable for electronic
hardware implementations have been hot research topics
for a long time [1]-[7], where there exit two major ap-
proaches as summarized in Table 1: (1) an analog VLSI
approach that implements an ordinary differential equation
(ab. ODE) by a nonlinear analog circuit, and (2) a digi-
tal processor approach that implements a numerical inte-
gration by a digital processor with a memory. Recently,
a novel hardware-oriented neuron modeling approach has
been proposed, where the nonlinear dynamics of a neu-
ron is modeled by an asynchronous cellular automaton (ab.
CA) that is implemented by an asynchronous sequential
logic circuit [8]-[11]. Among these asynchronous sequen-
tial logic spiking neurons, one of the simplest models is
the integrate-and-type digital spiking neuron (ab. DSN)
[10] that can exhibit various bifurcations and nonlinear re-
sponses to input spike-trains.

In this paper, a pulse-coupled system of the DSNs (ab.
PCDSN) is introduced. It is shown that each DSN can
exhibit various periodic islands. It is also shown that the
PCDSN can exhibit various synchronization phenomena
(lockings) of the islands whose characteristics have simi-
larities to devil’s staircases and Arnold tongues. Signifi-
cances of this paper include the following points. (a) The
PCDSN can be easily implemented by a wired system of
shift registers, where the wiring pattern (i.e., control pa-
rameter) can be easily and dynamically updated by us-
ing a reconfigurable hardware such as a dynamic recon-
figurable FPGA [12] as summarized in Table 1. (b) Asyn-
chronous CAs and asynchronous sequential logic circuits
have not been sufficiently investigated compared to syn-
chronous ones [13][14]. The series of the researches on
asynchronous sequential logic spiking neurons (including
this paper) [8]-[11] will contribute to develop a research

Table 1: Artificial spiking neurons.
Analog Digital Asynchronous

Approach VLSI Processor Sequential
[1]-[5] [6][7] logic [8]-[11]

Dynamics Nonlinear Numerical Asynchronous
ODE Integration CA

State / Continuous / Discrete / Discrete /
Time Continuous Discrete Continuous

Processor, Wired shift
Imple- Analog memory, registers
mentation nonlinear and (compact

circuit peripherals sequential
logic circuit)

Dynamic Straightforward Possible Possible by
parameter implementation by processor dynamic
update is troublesome reconfigurable

hardware

framework of nonlinear dynamics of asynchronous CAs
and/or asynchronous sequential logic circuits.

2. Pulse-Coupled Digital Spiking Neurons and
Periodic Synchronization Phenomena

In this section, we introduce a pulse-coupled system of
two digital spiking neurons (ab. PCDSN) the hardware
model of which is shown in Fig.1, where the two digital
spiking neurons (ab. DSNs) are denoted by DSN(1) and
DSN(2). The PCDSN has the following internal clock.

C(t) =
{

1 if t = 0, 1, 2, · · · ,
0 otherwise,

where t ∈ R is a continuous time.
First, we explain the dynamics of the DSN(1). The

rhythm register is an M(1)-bit one-hot-coded shift register
having an integer state P(1) ∈ {0, 1, · · · ,M(1) − 1} called a
rhythm state. The internal clock C(t) induces transitions of
the rhythm state P(1) as follows.

P(1)(t+) =
{

P(1)(t) + 1 (mod M(1)) if C(t) = 1,
P(1)(t) otherwise, (1)

where t+ ≡ limδ→+0 t + δ. The rhythm register is wired to
the N(1)-bit membrane register, where the wiring pattern is
described by the following wiring function A(1).

A(1)( j) = i if the j-th bit of the rhythm register is wired
to the i-th bit of the membrane register

(2)
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Figure 1: Pulse-coupled system of two DSNs (ab.
PCDSN).

that is characterized by the following wiring pattern A(1).

A(1) ≡ (A(1)(0), · · · , A(1)(M(1) − 1)). (3)

Then the right terminals of the reconfigurable wires output
the following one-hot-coded signal B(1)(t).

B(1)(t) = A(1)(P(1)(t)). (4)

The signal B(1)(t) is called a base signal. An example of the
base signal B(1)(t) is shown in Fig.2. As shown in Fig.1, the
membrane register is an N(1)-bit one-hot-coded shift regis-
ter having an integer state X(1) ∈ {0, 1, · · · ,N(1) − 1} called
a membrane potential. The DSN(1) accepts the following
input spike-train S (1)(t).

S (1)(t) =
{

1 if t = φ(1)
0 + nd(1),

0 otherwise,
n = 0, 1, 2, · · · , (5)

where d(1) is an input period and φ(1)
0 is an initial input

phase. The input spike-train S (1)(t) induces transitions of
the membrane potential X(1)(t) as follows.

X(1)(t+) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(1)(t) + 1 if S (1)(t) = 1 and X(1)(t) < N(1) − 1,
B(1)(t) if S (1)(t) = 1 and X(1)(t) = N(1) − 1,
X(1)(t) otherwise.

(6)

Then, as shown in Fig.2, the membrane potential X(1)(t)
oscillates between the base signal B(1)(t) and the constant
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Figure 2: Time-domain waveforms of the PCDSN.

value N(1) − 1 that can be regarded as a firing threshold. In
addition, as shown in Fig.2, the DSN generates the follow-
ing spike-train Y (1)(t).

Y (1)(t) =
{

1 if S (1)(t) = 1 and X(1)(t) = N(1) − 1,
0 otherwise. (7)

As shown in Fig.2, the n-th spike position in the spike-train
Y (1)(t) is denoted by t(1)

n and its corresponding spike phase
θ(1)

n is defined by θ(1)
n ≡ t(1)

n (mod M(1)) ∈ Θ(1) ≡ [0,M(1)),
where n = 0, 1, 2, · · ·. In order to characterize the spike-
train Y (1)(t), we introduce the following definition.

Definition 1: Let a continuous closed subset I(1) in the
interval Θ(1) be called an island in Θ(1), where the in-
terval Θ(1) is regarded as a circle (i.e., continuous at 0
and M(1)) and thus the island I(1) may include 0. Let
{I(1)

0 , I
(1)
1 , · · · , I(1)

Q−1} denote Q disjoint islands in the inter-
val Θ(1) and let the maximum length ε of the islands be
called an island size. A spike-train Y (1)(t) is said to be pe-
riodic in Q-islands with size ε if there exists a set of Q
islands {I(1)

0 , I
(1)
1 , · · · , I(1)

Q−1} with the island size ε such that
θ(1)

nQ+q ∈ I(1)
q for all n and q, and θ(1)

nQ+q � I(1)
p for all n and

p � q.

Fig.3(a) shows characteristics of the spike phase θ(1)
n for the

input period d(1), where {I(1)
0 , I

(1)
1 } and {I(1)

0 , I
(1)
1 , I

(1)
2 , I

(1)
3 }

are periodic islands. In order to further characterize the
spike-train Y (1)(t), we define the following average inter-
spike interval (ab. average ISI) Δ̄(1).

Δ̄(1) ≡ lim
N→∞

1
N

N−1∑
n=0

Δ(1)
n , Δ(1)

n ≡ t(1)
n+1 − t(1)

n . (8)

Fig.3(b) shows the characteristics of the average ISI.
Next, we explain the dynamics of the DSN(2). As shown

in Fig.1, the rhythm register of the DSN(2) has the same
structure as that of the DSN(1). Hence its dynamics is de-
scribed by Equation (1) except that all the indexes (1) are
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Figure 3: Bifurcation and response of the DSN(1) to the
input S (1)(t). M(1) = N(1) = 32. A(1)(m) = m + 8 for
0 ≤ m ≤ 7, m for 8 ≤ m ≤ 15, m − 8 for 16 ≤ m ≤ 23, and
m − 16 for 24 ≤ m ≤ 31. (a) Bifurcation diagram of the
spike phase θ(1)(n). (b) Characteristics of the average ISI
Δ̄(1).

replaced with (2). Also, the structure of the reconfigurable
wires are the same, and thus a base signal B(2) of the DSN(2)

is described by Equations (2) and (4), where all the indexes
(1) are replaced with (2). As shown in Fig.1, the DSN(2)

accepts the following input spike-train S (2)(t).

S (2)(t) =
{

1 if t = φ(2)
0 + nd2),

0 otherwise,
n = 0, 1, 2, · · · , (9)

where d(2) is an input period and φ(2)
0 is an initial input

phase. In addition, the DSN(2) accepts the spike-train
Y (1)(t) from the DSN(1) through a synaptic weight W ∈
{−N(2), · · · ,−1, 0, 1, · · · ,N(2)}. Then the transitions of the
membrane potential X(2)(t) are described by the following
equation.

X(2)(t+) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(2)(t) + 1 if S (2)(t) = 1 and X(2)(t) < N(2) − 1,
B(2)(t) if S (2)(t) = 1 and X(2)(t) = N(2) − 1 or

Y (1)(t) = 1 and X(2)(t) +W ≥ N(2) − 1,
X(2)(t) +W if Y (1)(t) = 1 and X(2)(t) +W < N(2) − 1,
X(2)(t) otherwise.

(10)
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Figure 4: 2:3 locking with period M(1).

A typical behavior of the membrane potential X(2) is shown
in Fig.2. As shown in this figure, the DSN(2) generates a
spike-train

Y (2)(t) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if S (2)(t) = 1 and X(2)(t) = N(2) − 1

or Y (1)(t) = 1 and X(2)(t) +W ≥ N(2) − 1,
0 otherwise.

(11)

and exhibits the following two types of firings.

Self-firing : Y (2)(t) = 1 and Y (1)(t) = 0,
Compulsory-firing : Y (2)(t) = 1 and Y (1)(t) = 1.

In Fig.2, the DSN(2) exhibits self-firings at t = t(2)
0 , t(2)

1 and
t(2)
3 and compulsory-firings at t = t(2)

2 and t(2)
4 . In order to

characterize such phenomena, we give the following defi-
nition.

Definition 2: The PCDSN is said to exhibit a Q(1):Q(2)

locking with period T (1) and island size ε if (a) the DSN(1)

generates a periodic spike-train Y (1)(t) in Q(1)-islands with
an island size ε and a period T (1), (b) the DSN(2) generates
a periodic spike-train Y (2)(t) in Q(2)-islands with the island
size ε and the period T (1), and (c) there exists at least one
island I(2)

q ∈ Θ(2) in which the DSN(2) always exhibits the
compulsory-firing.

Fig.4 shows an example of 2:3 locking. In order to further
characterize the lockings, we define the following ISI ratio
ρ.

ρ ≡ Δ̄
(1)

Δ̄(2)
. (12)

Since the DSN(1) and the DSN(2) have the common pe-
riod T (1), the ISI ratio is given by ρ = Q(2)/Q(1). Fig.5(a)
shows numerically obtained characteristics of the ISI ra-
tio ρ for the input period d(2). It can be seen in this figure
that the graph of ρ is almost non-increasing and has many
steps, and thus the graph is similar to the devil’s staircase
[15][16]. Fig.5(b) shows numerically obtained characteris-
tics of the ISI ratio ρ for the input period d(2) and the synap-
tic weight W. It can be seen in this figure that there exist
many triangular regions in which the values of the ISI ratio
ρ are the same, and thus the triangular regions are similar
to the Arnold tongues [15][16].
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Figure 5: (a) Characteristics of the ISI ratio ρ for the input
period d(2) to the DSN(2), where the input period d(1) =

0.78 to the DSN(1) is fixed. The parameter values of the
DSN(1) are same as those in Fig.3. The parameter values
of the DSN(2) are M(2) = M(1), N(2) = N(1), and A(2)(m) =
A(1)(m)−2 for m = 0, 1, · · · ,M(1)−1. The synaptic weight is
W = 12. (b) Characteristics of the ISI ratio ρ for d(2) and W.
The parameter values of the PCDSN and the input period
d(1) are identical with those in (a) except for the synaptic
weight W.

3. Conclusions

The one-way pulse-coupled system of two integrate-and-
fire type digital spiking neurons was introduced. It was
shown that the pulse-coupled system can exhibit various
periodic synchronizations whose characteristics have cer-
tain degrees of similarities to devil’s staircases and Arnold
tongues. Future problems include the following points: (a)
more detailed analysis of synchronization phenomena of
the PCDSN; (b) synthesis and analysis of a large-scale net-
work of DSNs; and (c) development of an on-FPGA learn-
ing method for the large-scale network to mimic spatiotem-
poral phenomena of a local circuit of the brain. The authors
would like to thank Professor Toshimitsu Ushio of Osaka
University for valuable discussions. This work is partially
supported by the Center of Excellence for Founding Am-
bient Information Society Infrastructure, Osaka University,
Japan, and KAKENHI (21700253).
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