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Abstract—Among different measures of coupling and
causality, measures based on entropies have gained much
attention recently, such as the transfer entropy (TE) and
its extensions based on permutation entropies, i.e. the so-
called symbolic transfer entropy (STE) and the transfer en-
tropy on rank vectors (TERV). All these measures make
use of univariate embedding of each of the two time se-
ries. Very recently, we proposed a measure for coupling
and causality that is derived from mixed embedding, which
relies on information criteria regarding past, current and
future states. The components of the mixed embedding
vector indicate the presence of information transfer, and
a measure is formed to quantify it, called mutual infor-
mation from mixed embedding (MIME). We compare the
measures from univariate embedding, TE, STE and TERV,
and the measure from multivariate embedding, MIME. For
this, we make simulations on a number of known nonlin-
ear dynamical systems. Further, we apply the four mea-
sures to EEG records containing preictal and ictal states.
It turns out that MIME is rather robust and conservative in
detecting causal effects while the other three measures are
positively biased indicating often false causal effects.

keywords: multivariate time series, Granger causality, in-
formation flow, mixed embedding, epileptic EEG

1. Introduction

In the study of complex systems, such as climatic pro-
cesses, financial markets and brain dynamics, it is impor-
tant to identify and estimate the strength and direction of
inter-dependence among the interacting components, mea-
sured as multivariate time series. Among different mea-
sures of uni- or bi-directed dependence (phase synchro-
nization, Granger causality using prediction models or co-
herence measures, and local geometric properties in recon-
structed state spaces for the driving and driven systems,
e.g. see [1, 2]), we concentrate on the class of information-
based causality measures [3, 4, 5]. The most popular of
this type of causality measures is the transfer entropy (TE)
[3]. We also consider the variant of TE using rank vectors
instead of sample vectors [4] and the correction of this [6].
The main objective of this work is to compare the trans-
fer entropy measures with a measure we proposed very re-
cently, derived from mutual information conditioned on the

components of the driving system present in a mixed em-
bedding [7].

We conduct a simulation study to assess the ability of
the measures to detect correctly the direction and strength
of coupling, using some known chaotic systems. Then we
assess the measures on a real-world application, the inves-
tigation of the information flow in brain areas before and
after epileptic seizures.

2. Information-based Causality Measures

Let {xt} and {yt}, t = 1, . . . , n, denote two simultane-
ously observed time series derived from the dynamical sys-
tems X and Y , respectively. Using the method of delays,
the reconstructed points from the two time series are xt =

[xt, xt−τx , . . . , xt−(mx−1)τx ] and yt = [yt, yt−τy , . . . , yt−(my−1)τy ],
allowing different delay parameters τx, τy and embedding
dimensions mx, my for the systems X and Y , respectively.

Transfer entropy (TE) quantifies the information flow
from X to Y by the amount of information explained in
Y at T steps ahead by the state of X, accounting for the
concurrent state of Y [3]. In terms of the Shannon entropy
H(x) =

∑
p(x) log p(x), TE for the causal effect of system

X on system Y is defined as

TEX→Y = H(xt, yt)−H(yT
t , xt, yt) + H(yT

t , yt)−H(yt). (1)

For the estimation of the entropy terms, we use the ap-
proach of nearest neighbors [8]. To account for the effect
of X on the evolution of Y over a time horizon T , we ex-
tend the single one step ahead mapping to the future vector
yT

t = [yt+1, . . . , yt+T ]′ in the definition of TE in eq.(1).
In [4], the symbolic transfer entropy (STE) is defined as

TE but on rank-points formed by the reconstructed vectors
of X and Y . Each sample reconstructed vector, say wt, in
eq.(1) is replaced by the rank-point ŵt = [r1, r2, . . . , rm],
where r j ∈ {1, 2, . . . ,m} are the ranks of the vector compo-
nents j = 1, . . . ,m. Following this sample-point to rank-
point conversion, yT

t is replaced by the rank point at time
t + T , ŷt+T , and STE is defined as

STEX→Y = H(x̂t, ŷt) − H(ŷt+T , x̂t, ŷt) + H(ŷt+T , ŷt) − H(ŷt),

where the entropies are computed from the estimated prob-
ability mass functions of the rank-points.

In [6], it was shown that instead of replacing yT
t with

ŷt+T , as done in STE, it is more appropriate to use ŷT
t =
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[ŷt+1, . . . , ŷt+T ], the ranks of yT
t = [yt+1, . . . , yt+T ] in the

augmented vector [yT
t , yt]. The proposed measure of trans-

fer entropy on rank vectors (TERV) is

TERVX→Y = H(x̂t, ŷt) − H(ŷT
t , x̂t, ŷt) + H(ŷT

t , ŷt) − H(ŷt).

In the following, we present briefly the causality
measure of mutual information from mixed embedding
(MIME), which relies on a non-uniform embedding
scheme for the bivariate time series {xt, yt}, t = 1, . . . , n
with the purpose to explain best the future of Y , as given
by the future vector yT

t [7]. The rationale of the proposed
embedding scheme is that the components of the derived
embedding vector, denoted zt, must be least dependent to
each other and able to explain best yT

t .
The components of the embedding vector zt are to

be selected from the set of delayed components Zt =

{xt, xt−1, . . . , xt−Lx , yt, . . . , yt−Ly }, where Lx, Ly are the maxi-
mum lags for X and Y . The progressive embedding scheme
starts with an empty embedding vector z0

t . Then at a step j,
the component z j

t ∈ Zt \ z j−1
t to be added to z j−1

t is the one
that maximizes the (mutual) information to yT

t accounting
(conditioning) for the current components in z j−1

t . The cri-
terion for the selection of z j

t reads

max
z j

t

{
I
(
yT

t ; z j
t | z

j−1
t

)}
.

The progressive vector building stops at step j and then
zt = z j−1

t , if the addition of the new component z j
t does not

improve significantly the mutual information of the future
vector and the embedding vector. Thus the stopping crite-
rion is

I
(
zF ; z j−1

n

)
/I

(
zF ; z j

n

)
> A,

for a threshold A ≤ 1. The closer A is to 1 the more relaxed
is the stopping criterion allowing for more components to
enter in the form of zt. On the other hand, a smaller A
results in lower dimensions of the mixed embedding. Here,
we use A = 0.95, which was found in [7] to be a good
trade-off value.

The embedding vector from the mixed embedding
scheme may contain components from both X and Y , and
can be represented in terms of these two sets of components
as

zt = [zx
t , z

y
t ] = [xt−lx1 , xt−lx2 , . . . , xt−lxmx

, yt−ly1 , . . . , yt−lymy
].

Then the measure MIME is defined as

MIMEX→Y = 1 −
I(yT

t ; zy
t )

I(yT
t ; zt)

=
I(yT

t ; zx
t | z

y
t )

I(yT
t ; zt)

.

MIMEX→Y measures the information of Y explained only
by components of X in the embedding vector, normalized
by the total mutual information (in order to give a value
between 0 and 1). If zt contains no components from X,
then MIMEX→Y = 0 and X has no effect on the future of Y .

In the computation of MIME, first the optimal represen-
tation of the driving system X and response system Y in the
mixed embedding is found, giving the mx and my compo-
nents in zt, respectively. This is a main difference of MIME
from the other information-based causality measures, for
which mx and my are decided a priori as the embedding di-
mensions of separate fixed delay embeddings for X and Y ,
commonly setting mx = my [3, 4, 5]. Indeed we have found
that the outcome of TE, STE and TERV depends strongly
on the choice of mx and my [2, 6], and MIME overcomes
this problem using the progressive embedding scheme at
the cost of significantly larger computation time.

3. Simulations on Chaotic Coupled Systems

In the simulations below we always set τx = τy = 1 and
use 10 neighboring points for the estimation of entropies in
TE and MIME.

We first evaluate the measures on the driver-response
Henon system given by

xn+1 = 1.4 − x2
n + 0.3xn−1

yn+1 = 1.4 −
(
Cynxn + (1 −C)y2

n

)
+ 0.3yn−1,

for coupling strength C taken the values
0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. For each C we gen-
erate 100 realizations and compute the measures for T = 1.
For MIME we set Lx = Ly = 5. The results on TE, STE
and TERV vary significantly with the choice of mx and my,
and we even observe larger values in the wrong coupling
direction when mx is much smaller than my. We further
show results on TE, STE and TERV only for mx = my,
which is the choice typically met in the works on these
measures. In Fig. 1, we show results for mx = my = 3
and for noise-free and noisy time series of small and large
length n. We note that regardless of n and the presence of
noise all the measures detect well the causal effect X → Y
obtaining positive values, but STE and TERV are also
positive for C = 0 and in the wrong direction of coupling,
whereas TE gets positive only for noisy data and large C,
in particular when n = 4096 (see Fig. 1d). On the other
hand, MIMEY→X is always zero and actually this holds for
all 100 realizations, as shown in Fig. 1b for the standard
deviation (SD) of the measures. MIME has also the
smallest SD for the direction X → Y giving a rather stable
and consistent estimation of the causal effect. It should be
noted that for very weak coupling (C = 0.05), MIME does
not detect the driving of X as no components enter the
form of the constructed embedding vector, while TERV
in particular is larger in the correct direction. As argued
in [7], MIME can be more sensitive to weak coupling
by increasing the threshold A, but then there is higher
probability of having irrelevant components in the form
of the embedding vector by chance, which then generates
positive MIMEY→X as well. Thus using A = 0.95, MIME
turns out to be a more strict but stable measure of causality.
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Figure 1: (a) The mean of the measures, as shown in the
legend, from 100 realizations of the unidirectionally cou-
pled Henon map for the correct direction X → Y (black
line) and the opposite direction (gray line, cyan online).
The time series length is n = 1024 and the data are noise-
free. (b) The standard deviation (SD) of the measures in
(a). (c) As in (a) but when adding normal white noise to
both time series with SD being 20% of the data SD. (d) As
in (c) but for n = 4096.

The same results on MIME are found from the simula-
tions on the next system, the coupled Rössler–Lorenz sys-
tem given by

ẋ1(t) = 6(−y1(t) − z(t)1)
ẏ1(t) = 6(x1(t) + 0.2y1(t))
ż1(t) = 6(0.2 + x1(t)z1(t) − 5.7z1(t))
ẋ2(t) = 10(y2(t) − x2(t))
ẏ2(t) = 28x2(t) − y2(t) − x2(t)z2(t) + Cy1(t)2

ż2(t) = −8/3z2(t) + x2(t)y2(t),

where the driving time series regards y1 and the response
y2, for C being 0, 0.5, 1, 1.5, 2, 3, 4. We compute the mea-
sures for T = 3 to account for driving effects over several
steps ahead. This complicates the computation of TE, STE
and TERV because the entropy terms take as arguments
larger vectors, introducing more bias in the estimation of
the entropies and subsequently the estimation of the mea-
sures. The bias is particularly large for small time series
and increases with the addition of noise as shown in Fig. 2
for mx = my = 3 and n = 1024. It also increases with the
embedding dimensions, particularly for STE and TERV. In
the computation of MIME we let Lx = Ly = 15 to account
for all significant delays. Again MIMEY→X lies at the zero
level and increases slightly only for noisy data and large C
(see Fig. 2b). This zero level of MIMEY→X combined with
the significantly positive MIMEX→Y for all C > 0 suggests
a reliable detection of the direction of the causal effect and
estimation of its strength. The other measures fail to pro-

Figure 2: (a) Results as in Fig. 1a but for T = 3 and for the
unidirectionally coupled Rössler–Lorenz system. (b) As in
(a) but for 20% additive normal white noise.

vide reliable estimation due to the presence of biased posi-
tive measure values for the direction Y → X. In particular,
STE tends to give larger values for the wrong direction and
this is corrected by TERV. The variance of TE, STE and
TERV is again at the same (significant) level in both direc-
tions, blurring the observed difference of the mean values
of TE and TERV in the two directions in Fig. 2, whereas
MIMEY→X is again zero for all 100 realizations except for
the noisy data and large C, where it has also large variance.

4. Application of the Causality Measures to epileptic
EEG

The application regards human scalp electroencephalo-
graphic (EEG) recordings from several hours before epilep-
tic seizure onset to many minutes after the seizure end. We
consider anti-hemispheric channels in pairs from the left
and right frontal (F3 and F4), central (C3 and C4), tempo-
ral (T7 and T8) and parietal lobe (P3 and P4). We used
6 records of generalized tonic-clonic seizures of different
patients. Each EEG record was split in segments of 30
sec (sampling time 0.01 sec) and the measures TE, STE,
TERV and MIME were computed on each EEG segment
of channel pairs (T = 1, Lx = Ly = 20). For TE, STE,
TERV, mx = my were set to 3, 6 and 10, giving varying
results: the STE and TERV profiles over the whole record-
ing increased a lot with the embedding dimension, while
the TE profile was always at the same level but varied in
shape (see Fig. 3a and b for the TE profiles from one EEG
record). The STE and TERV measures produced the same
profile with small changes for mx = my = 3 and being
almost identical for larger embedding dimensions. There-
fore only the TERV profile is shown for the same episode
in Fig. 3c. The profiles of TE, STE and TERV are posi-
tive for all segments and channel pairs, and for both direc-
tions, so that one would conclude that information flows
constantly from left to right and vice versa at all brain areas
and regardless of the epileptic state (preictal, ictal, postic-
tal). Given the presence of positive bias in all these mea-
sures, as observed in the simulations, this conclusion may
not be correct and then one should look at differences in
the level of these measures in the two directions in order
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Figure 3: (a) The profile of TE for mx = my = 3 for one
epileptic EEG record for the 4 channel pairs and the two
directions for each pair, as denoted at each panel. (b) Same
as (a) but for mx = my = 10. (c) Same as (a) but for TERV.
(d) Same as (a) but for MIME. The vertical dashed line
denotes the seizure onset.

to find specific patterns of information flows. For the spe-
cific profiles in Fig. 3, it seems that there is larger causal
effect (information flow) from left to right central, parietal
and temporal lobes than in the opposite direction. This is
exactly what we observe clearly with the MIME measure
as MIME is positive in the left to right direction at these
lobes and zero in the opposite direction in almost all seg-
ments. The same characteristics were observed in the other
5 epileptic records. For the last preictal period in Fig. 3,
MIME stays at zero for all directions and channel pairs,
whereas the TE measure gets large as the embedding di-
mension increases in both directions and all channel pairs
(and STE and TERV become even larger, not shown here),
suggesting that there are other effects than driving, causing
this large increase of TE, STE and TERV but not affecting
MIME. This pattern at the late preictal period was absent
in the other 5 epileptic records. No significant differences
were observed after the seizure onset with TE, STE and
TERV, whereas MIME often turned to zero.

5. Discussion

It has been already pointed in the literature that the
causality measures, including the measures TE, STE and
TERV, contain positive bias that can be attributed to ef-
fects other than the driving effect, mainly the dynamics
of the individual systems, the state space reconstruction,
the time series length and noise. We observed the posi-
tive bias of the three measures both in the simulations with
the coupled Henon maps and the Rössler–Lorenz system,

as well as in the application to epileptic EEG records. On
the other hand, the causality measure MIME, which is a
normalized conditional mutual information derived from a
non-uniform mixed embedding, turns out to be a less bi-
ased estimate of causal effect. MIME has the nice property
of being exactly zero when no causal effect is found, i.e.
no components of the driving time series are present in the
vector of mixed embedding. This property is particularly
useful in real-world applications, as it detects only signif-
icant driving effects, whereas TE, STE and TERV are al-
ways positive at a varying level due to bias, so that it cannot
be concluded whether the driving effect is true. Therefore
opposite to MIME, these measures, as any other causality
measure, cannot be applied without including a bias cor-
rection or a significance hypothesis test.
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