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Abstract— This paper discusses the discretization method
that is used in the implementation of an optimization-
based nonlinear feedback controller called Iterative Linear
Quadratic Regulator (ILQR). While a finite difference ap-
proximation is usually used in the field of control engineer-
ing, we propose to use the variational equation in the pro-
cedure of ILQR. The effectiveness of using the variational
equation is examined through a case study with swing-up
control of an inverted pendulum.

1. Introduction

Optimal control is a fundamental problem in modern
control theory, and the Linear Quadratic Regulator (LQR)
method has been established for linear systems. However,
it is difficult to solve a nonlinear optimal control problem
in many cases. Recently, a method called Iterative LQR
(ILQR)[1] is often used not only for trajectory optimization
but also for feedback control (as a model predictive control
method), and its effectiveness is demonstrated in some ap-
plications [2, 3]. In ILQR, the nonlinear state equation is
iteratively linearized around a nominal trajectory, and the
resultant LQR problem is solved at each step. When imple-
menting ILQR, in the field of control engineering, a finite
difference approximation, such as Euler method, is gener-
ally used to discretize the original continuous-time model,
see e.g. [4]. However, the approximation error increases as
the increase in the sampling period. Therefore, it would be
appropriate to use variational equation [5], which enables
direct linearization of the transition map of the discretized
system and is commonly used for analysis of nonlinear dy-
namical systems.

In this paper, the two ILQR methods using the finite dif-
ference approximation and the variational equation are ap-
plied to the swing-up control of an inverted pendulum, and
the effectiveness of the variational equation is examined.
To clearly evaluate the optimality of these trajectories, the
exact solution to the Hamilton-Jacobi equation for the opti-
mal control problem is also derived by the stable manifold
method [6, 7] and compared with the results of ILQR.
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2. ILQR Using Variational Equation

In this section, we first introduce the framework of ILQR
for discrete-time systems proposed in [1], and then describe
how the variational equation can be applied to derive the
time-varying linear system used in ILQR.

2.1. ILQR for Discrete-time Systems

Consider the discrete-time control system described by
the state equation:

x(k + 1) = f̄ (x(k), u(k), k) (1)

where x stands for the state variable, u for the control in-
put, and f̄ (x(k), u(k), k) is the function representing the time
evolution of the state. ILQR is an iterative method, and
each iteration starts with a series of nominal control in-
puts {ūk}N−1

k=0 calculated in the previous step k − 1, and the
nominal state trajectory {x̄k}Nk=0 obtained by applying these
inputs to the controlled system. Let δxk := xk − x̄k and
δuk := uk − ūk be the deviations from the nominal trajec-
tory and input, respectively, then the system (1) can be lin-
earized as

δxk+1 = Akδxk + Bkδuk (2)

where Ak := ∂ f̄ /∂xk and Bk := ∂ f̄ /∂uk. Then, for this
linear model (2), we solve the LQR problem with the fol-
lowing cost function at each step k:

J = (x̄N + δxN)⊤ Q f (x̄N + δxN)

+

N−1∑
k=0

{
(x̄k + δxk)⊤ Q (x̄k + δxk) + (ūk + δuk)⊤ R (ūk + δuk)

}
(3)

where Qf ∈ Rn×n and Q ∈ Rn×n are semidefinite matrices
and R ∈ Rm×m is a positive definite matrix.

2.2. Linearization by Variational Equation

The matrices Ak and Bk in Eq. (2) are defined as the Jaco-
bians of f̄ . However, if the system is given as a continuous-
time system ẋ = f (x, u, t), no analytic expression is avail-
able for f̄ . In the field of control engineering, a finite dif-
ference approximation, such as Euler method, is generally
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used, see e.g. [4], and the system (1) is approximated by

x(t + ∆t) ≃ x(t) + ∆t f (x, u). (4)

Thus, the matrices Ak and Bk are given by

Ak =
∂ f̄
∂xk
= I + ∆t

∂ f
∂xk
,

Bk =
∂ f̄
∂uk
= ∆t

∂ f
∂uk
.

(5)

However, with the finite difference method, the approx-
imation accuracy deteriorates as the increase in the sam-
pling period ∆t. In this paper, we propose to apply the
variational equation [5] for deriving the time-varying lin-
ear system used in ILQR. For this, from the state xk and the
input uk, the next state xk+1 is given by solving the differ-
ential equation from time tk to tk + ∆t:

˙̃x = f̃ (x̃, t), x̃(tk) = x̃k :=
[
xk

uk

]
(6)

where x̃ = [x⊤ u⊤]⊤ and f̃ = [ f (x, u)⊤ 0]⊤. Let ϕt(x̃k, tk) be
the solution starting from the initial value x̃k of Eq. (6) at
time tk, then the following equations hold:

ϕ̇t(x̃k, tk) = f̃ (ϕt(x̃k, tk), t), (7)

ϕtk (x̃k, tk) = x̃k. (8)

Differentiating these by x̃k we obtain,

∂ϕ̇t

∂x̃k
(x̃k, tk) =

∂ f̃
∂x̃

(ϕt(x̃k, tk), t)
∂ϕt

∂x̃k
(x̃k, tk), (9)

∂ϕtk

∂x̃k
(x̃k, tk) = I. (10)

Let Φt(x̃k, tk) = ∂ϕt/∂x̃k(x̃k, tk), then Eqs. (7) and (10) can
be rewritten as follows:

Φ̇t(x̃k, tk) =
∂ f̃
∂x̃

(ϕt(x̃k, tk), t)Φt, (11)

Φtk (x̃k, tk) = I. (12)

Here, Φtk+∆t can also be described by

Φtk+∆t =

 ∂ f̄
∂xk

∂ f̄
∂uk

0 0

 . (13)

Therefore, by solving Eqs. (7), (8), (11) and (12) simulta-
neously, we obtain Ak and Bk.

3. The stable manifold method

This section briefly reviews the stable manifold method
[6] to calculate the exact optimal trajectory for the inverted
pendulum problem discussed in the next section. Consider

the control problem with the state equation and the cost
function:

ẋ = f (x) + g(x)u, x(0) = x0, (14)

J =
∫ ∞

0
(x⊤Qx + u⊤Ru)dt. (15)

where x ∈ Rn, u ∈ Rm, f (·) : Rn → Rn, g(·) : Rn → Rn×m.
For this control problem, the Hamilton-Jacobi equation is
expressed as

H(x, λ) = λT f (x) − 1
4

g(x)R−1g(x)Tλ + xT Qx = 0. (16)

The stabilizing solution of Eq. (16) is equivalent to the
stable manifold of the origin of the following Hamiltonian
system [9]: 

ẋ =
∂H
∂λ

(x, λ)

λ̇ = −∂H
∂x

(x, λ)
(17)

Then, by introducing a suitable coordinate transformation
T as (

q
p

)
:= T−1

(
x
λ

)
, (18)

the system (17) can be rewritten as(
q̇
ṗ

)
=

(
A − R̄Γ 0

0 −(A − R̄Γ)T

) (
q′

p′

)
+ higher order terms

(19)

where R̄ = g(x)R−1g(x)⊤ and Γ is the stabilized solution of
the Riccati equation consisting of linear terms of the form
(16). Furthermore, by setting F = A − R̄Γ and letting ns

and nu be higher-order nonlinear terms, Eq. (19) can be
rewritten as follows: q̇ = Fq + ns(t, q, p),

ṗ = −F⊤p + nu(t, q, p).
(20)

We assume that F is an asymptotically stable n × n real
matrix, and ns, nu are higher order terms with sufficient
smoothness. We define the sequences qk(t, ξ) and pk(t, ξ)
by 

qk+1 = eFtξ +

∫ t

0
eF(t−s)ns(s, qk(s), pk(s))ds,

pk+1 = −
∫ ∞

t
e−FT (t−s)nu(s, qk(s), pk(s))ds.

(21)

for k=0,1,2, ..., and q0 = eFtξ

p0 = 0
(22)

with arbitary ξ ∈ Rn. Then the following theorem holds:
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Theorem 1 [6]. The sequences qk(t, ξ) and pk(t, ξ) are
convergent to zero for sufficiently small |ξ|, that is, qk(t, ξ),
pk(t, ξ) → 0 as t → ∞ for all k = 0, 1, 2, ... Furthermore,
qk(t, ξ) and pk(t, ξ) are uniformly convergent to a solution
of (20) on [0,∞) as k → ∞ for sufficiently small |ξ|. Let
q(t, ξ) and p(t, ξ) be the limits of qk(t, ξ) and pk(t, ξ), re-
spectively. Then, q(t, ξ), p(t, ξ) are the solution on the sta-
ble manifold of (20), that is, q(t, ξ), p(t, ξ)→ 0 as t → ∞.

For each k, the functions in (21) are calculated for the sys-
tem (19) to obtain pk(t, ξ) and qk(t, ξ). Functions xk(t, ξ)
and λ(t, ξ) given by (

x
λ

)
= T

(
p
q

)
(23)

form parameterizations of the approximate stable mani-
fold. Since the obtained trajectories are solutions of the
Hamilton-Jacobi equations, the computed trajectories are
guaranteed to be optimal.

4. Swing-up Control of Inverted Pendulum

In this section, we present numerical simulations of the
swing-up stabilization of an inverted pendulum by ILQR-
based model predictive control, and compare it with the
optimal solution obtained by the stable manifold method
[6, 7]. The inverted pendulum system considered here is a
twodimensional model, where the pendulum is attached on
a massless cart that has been studied in [7]. The equation
of motion of this inverted pendulum model is given by:

ẋ = f (x) + g(x)u (24)

where x := [x1, x2]⊤. Here x1 stands for the angle of the
pendulum, x2 for the angular velocity, and u for the accel-
eration of the cart. The functions f and g are given by

f (x) =


x2

MGL sin x1 − ML2x2
2 sin x1 cos x1

J + ML2 sin2 x1

 , (25)

g(x) =


0

−L cos x1

J + ML2 sin2 x1

 . (26)

where M stands for the mass of the pendulum, G for the
acceleration of gravity, L for the length of the pendulum to
the center of gravity, and J for the moment of inertia. The
setting of the parameter is the same as in [7].

The weights are set to Q f = 0, Q = diag[2, 0.01], R = 2
in Eq.(3). The prediction horizon is fixed to N = 10, and
the sampling period ∆t is varied from 0.01s to 0.05s.

Figures 1a and 2a show the simulation results with the
finite difference approximation and with the variational
equation, respectively. In both two cases, when ∆t = 0.01 s,
the trajectory does not reach the upright position, (x1, x2) =
(0, 0), and converges in the middle of the swing up. When

∆t = 0.02 s, it converges to (x1, x2) = (0, 0), and when
∆t = 0.03 s, the trajectory becomes closer to the optimal
trajectory (shown by the purple line), suggesting that the
longer prediction interval leads to better control perfor-
mance. However, in Figure 1a, at ∆t = 0.03 s, we can
see that it oscillates without converging to (x1, x2) = (0, 0).
This is due to the increase in the approximation error of the
finite difference method.

The effect of the approximation error becomes more pro-
nounced for larger sampling periods as shown in Figure
1b. It can be seen that with the finite difference method,
the state of the pendulum is not stabilized in the both cases
of ∆t = 0.04 and 0.05 s. In contrast, when the variational
equation is used, as shown in Figure 2b, the pendulum can
be stabilized at the upright position for both ∆t = 0.04 and
∆t = 0.05 s, while there is an overshoot passing through
upright position when ∆t = 0.05 s. This is because the
larger the sampling period leads to the lower update fre-
quency of the control input. Thus, there is a trade-off be-
tween the longer outlook horizon, which leads to a better
control performance, and the lower update frequency of the
input, which makes the feedback stabilization more diffi-
cult. Nevertheless, it can be seen that the overall control
performance with the ILQR using the variational equation
is better than that using the finite difference method due to
low approximation error.

To achieve a better control performance, there are two
ways to increase the outlook horizon: by increasing the
prediction step size N and by enlarge the sampling period
∆t, but increasing the step size N has the disadvantage of
increasing the computation time to solve the resultant opti-
mization problem. In the case of model predictive control,
the optimization must be completed within the sampling
period, and there is a limit on the step size N for real-
time implementation. On the other hand, increasing the
sampling period has the advantage that it does not directly
affect the computational complexity. However, the finite
difference method has a disadvantage that the approxima-
tion error increases when the sampling period is increased.
The above simulation results clearly show that the use of
variational equations can solve this drawback. This makes
it possible to take a long outlook horizon, which leads to
a better control performance, while it should be noted that
too large sampling may deteriorate the control performance
due to low update frequency of the control input.

5. Conclusion

In this paper, we discussed the discretization method that
is used in ILQR. We simulate the swing-up stabilization of
an inverted pendulum by ILQR with the finite difference
approximation and with the variational equation. As a re-
sult, the effectiveness of the variational equation was con-
firmed by the fact that it was able to stabilize the swing-up
even when the sampling period was large. In the future, we
would like to verify the system with actual machines and
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Figure 1: ILQR using finite difference method

with more complex controls.
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