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Abstract— With the progress in Artificial intelligence (AI)
computer vision, semantic segmentation of Light Detec-
tion and Ranging (LiDAR) point clouds using deep neu-
ral networks (DNNs) has attracted attention in autonomous
driving. Considering recognition accuracy and computa-
tional complexity, a promising approach is to project a
point cloud into a 2-dimensional (2D) range image and
process it with 2D convolutional neural networks (CNNs).
Since distant objects appear smaller than nearby objects in
an image, it is crucial to incorporate scale-equivariance into
the CNN to improve parameter efficiency and recognition
accuracy, but no method has focused on it. We proposed a
new scale-equivariant convolution method, focusing on the
relationship between object distance and scale ratio in im-
ages as well as the theoretical properties of partial differen-
tial operators. Evaluation experiments on the LiDAR point
cloud dataset demonstrate the effectiveness of our method.

1. Introduction

An accurate and robust understanding of the environ-
ment is essential for autonomous driving. Therefore, var-
ious sensors have been utilized, in addition to cameras.
Light Detection and Ranging (LiDAR) scanner is one of
the promising sensors to be utilized further in the future
because it can acquire 3-dimensional (3D) information ac-
curately and be easily integrated into later decision-making
and operations. On the other hand, research on recogni-
tion techniques such as semantic segmentation of LiDAR
point clouds using deep neural networks (DNNs) has at-
tracted much attention with the progress in Artificial intel-
ligence (AI) computer vision. Semantic segmentation of
point clouds is assigning an object class label to each point
in a point clouds, which is used to recognize objects and
locate drivable areas.

Recent semantic segmentation of point clouds can be
roughly divided into two categories. The first is for small-
scale, high-density point clouds used in object analysis and
indoor scene understanding. In these cases, high shape ex-
traction performance is required, while processing speed
is often not as critical. Therefore, point-wise processing
methods based on PointNet [2] are the mainstream in this
case. The other is for large-scale and sparse point clouds,
such as outdoor scene understanding in autonomous driv-
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ing. In this case, the effectiveness of PointNet-based meth-
ods is limited due to the need for real-time processing and
the difficulty of acquiring contextual information. There-
fore, projection-based methods such as RangeNet++ [5]
and point-voxel-based methods such as SPVConv [3] are
the mainstream. Projection-based methods do not directly
process 3D point clouds but rather transform them into a
dense 2-dimensional (2D) representation, such as range im-
ages, projecting it onto a sphere centered on the sensor.
This process not only increases processing efficiency, but
also allows the use of standard CNNs for RGB images. The
results of segmentation in 2D space are then re-projected
onto 3D point cloud space to achieve point cloud segmen-
tation. Therefore, the projection-based method is effec-
tive regarding both computational efficiency and accuracy.
However, 2D projection causes differences in scale within
the image; for example, distant objects are represented as
smaller than nearby objects. As a result, even if the ob-
jects are the same, they are learned separately, reducing the
network parameter efficiency. Therefore, it is crucial to in-
corporate scale-equivariance into CNN such that the same
results are obtained regardless of local-scale differences.
However, to the best of our knowledge, no projection-based
method has focused on scale-equivariance.

This study proposes a new convolution method, range-
equivariant convolution (REconv), which effectively uti-
lizes the range information. The experiments on the Se-
mantic KITTI dataset [1] showed that by replacing the first
three convolutional layers of RangeNet21 [5] with REconv
resulted in a 1.1% improvement of mIoU. In addition, we
defined a measure called equivariance error, and evalu-
ated scale-equivariance by comparing the similarity of the
feature maps for inputs of different scales. The equivari-
ance error in the feature maps for the layers using REconv
was smaller than the one using standard convolution. This
result indicates that REconv has scale-equivariance. The
above two results demonstrate that REconv is an effective
method for semantic segmentation of LiDAR point clouds.

2. Related Works

2.1. LiDAR Point Clouds Segmentation

2.1.1. Point-Voxel-based Methods

Point-voxel-based methods such as SPVConv [3, 4]
combine point-wise processing with 3D convolution by di-
viding space into voxels. These methods can achieve high
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recognition accuracy but tend to be computationally expen-
sive. In addition, due to the imbalance in the density of the
point cloud, many voxels do not contain any points, which
reduces the computational efficiency. Cylinder3D [4] alle-
viated some of this problem by rethinking the voxel shape
but did not solve it completely.

2.1.2. Projection-based Methods

Among the methods for projecting LiDAR point clouds
into 2D range images, RangeNet++ [5] was proposed in
the early stages and has since become the baseline for many
studies, including this study. In RangeNet++, the LiDAR
point cloud is first projected onto a sphere, as follows:(

u
v

)
=

( 1
2 [1 − arctan(y/x)π−1] w

[1 − (arcsin(zr−1 + fup)f−1] h

)
, (1)

where (h, w) are the height and width of the desired range
image representation, f = fup + fdown is the vertical field
of view of the sensor, and r = ∥pi∥2 is the range of each
point. This equation provides the correspondence between
points and pixels, and the five channels of the range value
r, (x, y, z) coordinate values, and reflection intensity i were
used as inputs to the CNN. Semantic labels in the image
segmented by the 2D CNN were projected onto the point
cloud space using the correspondence between points and
pixels. In addition, the k-nearest neighbor method was ap-
plied in a 3D space to refine “shadow-like artifacts” caused
by the “blurring” of object boundaries. The k-nearest
neighbor method used here applies several approximations,
so the increase in computational complexity is kept to a
minimum. Subsequent research has proposed various im-
provement based on this method. SqueezesegV3 [6] intro-
duced a new convolution method that focuses on the differ-
ences in modalities, such as range r and (x, y, z) coordinate
values. MiNet [7] used standard and depth-wise convolu-
tion for each resolution to reduce the computational com-
plexity while maintaining high accuracy. SalsaNext [8]
achieves state-of-the-art performance among projection-
based methods by expanding the receptive field to facilitate
contextual information extraction. However, to the best of
our knowledge, no method focuses on the differences in
scale between the objects in an image.

2.2. Scale-Equivariant Convolution
In many image-based tasks, differences in object posi-

tion, orientation, and distance cause transformations, such
as shifting, rotating, or scaling the input image. Because
these transformations significantly affect the discriminative
power of the model, there is a discussion on equivariance,
which is the property of being able to extract the same fea-
tures from the input with these transformations. Standard
convolution is shift-equivariant but not rotation or scale-
equivariant. In autonomous driving, rotation-equivariance
is not so important since the situation where a rotated ob-
ject appears is unlikely. However, the scale-equivariance is

vital for 2D projected LiDAR images because objects at a
distance are represented as smaller than the nearby objects.

In the research on scale-equivariance in the framework
of CNN for RGB images, multiple methods [9, 10] have
been proposed. SESN [9] introduced a manipulatable fil-
ter, allowing it to handle arbitrary scales. DISCO [10]
uses a kernel derived by solving a constraint equation that
must be satisfied to be scale-equivariant and minimizes
the equivariance error. The above scale-equivariant con-
volution methods assumes that the scale ratio is unknown.
However, for LiDAR images, the scale ratio can be calcu-
lated using the range values. Partial differential operators
(PDOs) have straightforward theoretical scaling properties.
Therefore, we develop a new scale-equivariant convolution
method by defining a convolution filter as a linear combi-
nation of multiple PDOs, as in PDO-eConvs [11], which
allow the filter for manipulation by applying weights ac-
cording to the range and differential order of each PDO.

3. Method

3.1. Preliminaries
3.1.1. Scale Transformation

The scale transformation of the scale ratio s to the feature
function f : R→ R can be expressed as follows:

Ls[ f ](ξ) = f (s−1ξ), ∀s > 0. (2)

3.1.2. Approximation of PDOs
When the partial derivative in the x direction is denoted

by Dx, the result of applying Dx to the feature f (ξ) can be
discretized as follows:

Dx[ f ](ξ) ≈ f (ξ + ∆x) − f (ξ − ∆x)
2∆x

. (3)

Consequently, Dx can be represented by a following filter:

Dd
x =

1
∆x

 0 0 0
−1/2 0 1/2

0 0 0

 . (4)

Similarly, D0,Dy,Dxx,Dxy,Dyy,Dxxy,Dxyy, and Dxxyy can
be approximated by 3 × 3 filters. In the follow-
ing, we denote each discretized PDOs by Dd

∗ for ∗ ∈
{0, x, y, xx, xy, yy, xxy, xyy, xxyy} = D.

3.1.3. Partial Differentiation of Scaled Features
Applying the discretized Dd

x to the scaled features yields
the following equation:

Dd
x[Ls[ f ]](sξ) =

Ls[ f ](sξ + s∆x) − Ls[ f ](sξ − s∆x)
2s∆x

=
1
s
�

f (ξ + ∆x) − f (ξ − ∆x)
2∆x

=
1
s
� Dd

x[ f ](ξ). (∵ Eq. (3)) (5)
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Figure 1: Network architecture of REconvNet21 Figure 2: REconv residual block

Similarly, the results of applying each of the discretized
PDOs to the scaled features can be expressed as follows:

Dd
∗[Ls[ f ]](sξ) = s∗Dd

∗[ f ](ξ), (6)

s∗ =
1

si∗+ j∗
, (7)

where i∗ and j∗ representing the differential orders of D∗ in
the x and y directions respectively.

3.2. Range-Equivariant Convolution (REconv)
From the Eq. (4), each filter is multiplied by a coefficient

corresponding to the actual length per pixel and derivative
factor. The scale ratio s of a feature in a LiDAR image
is inversely proportional to the range r of the object cor-
responding to that pixel. Based on these properties, the
variable r∗ is defined as follows such that r∗s∗ = 1:

r∗ =
k i∗

x k j∗
y

ri∗+ j∗
. (8)

Note that kx and ky are the coefficients that depend on the
resolution in the x and y directions, respectively. i∗ and j∗
are the differential orders in the x and y directions of D∗,
respectively. We define a new weighted partial differential
operator using r∗ as follows:

Dr
∗ = r∗Dd

∗ . (9)

Furthermore, a convolution filter is defined as a linear com-
bination of nine Dr

∗ filters, parameterized by the learnable
coefficient parameter β = {β1, β2, . . . , β9} as follows:

Dd
r =

∑
∗∈D
βiDr

∗. (10)

The convolution with the filter above applied to the scaled
features is represented as follows:

Dd
r [Ls[ f ]](sξ) =

∑
∗∈D
βiDr

∗[Ls[ f ]](sξ)

=
∑
∗∈D
βir∗s∗Dd

∗[ f ](ξ)

=
∑
∗∈D
βiDd

∗[ f ](ξ)

= Dd
r [ f ](ξ). (11)

From the above, the convolution using Dr
∗ is a scale-

equivariant for LiDAR range images.

3.3. Usage of REconv
When incorporating REconv into a CNN, you should

consider the treatment of absolute values of range. It
should be added range information by post-processively
concatenating range images to the feature map processed
by REconv. When extracting features using PDOs, the ab-
solute range values are likely to be lost because of the focus
on the relative values between pixels. However, the abso-
lute range value is significant because it works as a prior
distribution for each class; for example, “vegetation” and
“buildings,” which correspond to the background tend to
appear at the distance. Therefore, we can compensate for
the weaknesses of REconv while benefiting from its advan-
tages by adding range information.

4. Experiments

4.1. Dataset
We conducted evaluation experiments using the Seman-

tic KITTI dataset [1], which is a LiDAR point cloud
dataset, as in RangeNet++ [5]. The sequences {0–7} and
{9, 10} are the training set and {8} is the validation set in
this dataset. The model was trained on the training set and
evaluated on the validation set in this study.

4.2. Segmentation Performance
4.2.1. Metrics

We used mIoU (mean intersection-over-union), which is
a commonly used metric for evaluating segmentation per-
formance.

mIoU =
1
C

C∑
c=1

TPc

TPc + FPc + FNc
. (12)

where TPc, FPc and FNc denote the numbers of true posi-
tives, false positives, and false negatives for class c; where
C denotes the number of classes;

4.2.2. Results and Discussions
The network structure is shown in Fig. 1 and Fig. 2

to rigorously evaluate the effectiveness of REconv.
RangeNet21 [5] was used as baseline, and the first three
convolution layers of the encoder were replaced with RE-
conv. Hereafter, this network is referred to as REcon-
vNet21. Tab. 1 compares the segmentation performances
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Table 1: Segmentation performance on Semantic KITTI dataset
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RangeNet21++ [5] 87.3 19.0 30.1 24.2 23.4 24.3 47.6 0.0 93.0 39.8 78.8 0.3 80.3 40.8 81.3 45.9 69.5 40.2 30.8 45.1
REconvNet21(ours) 89.7 13.2 38.5 29.6 25.2 26.4 48.0 0.0 93.3 42.9 79.9 0.2 81.5 43.0 80.7 45.1 69.7 40.5 30.1 46.2

Table 2: Equivariance Error on Semantic KITTI dataset

methods metrics 1st layer 3rd layer

RangeNet21[5]

MSE 0.0329 0.0151

variance 64 × 2048 0.0486 0.0317
32 × 1024 0.0662 0.0506

Error 0.5664 0.3778

REconvNet21(ours)

MSE 0.0032 0.0039

variance 64 × 2048 0.0428 0.0329
32 × 1024 0.0413 0.0352

Error 0.0823 0.1211

on the Semantic KITTI dataset. This table shows that
REconvNet21 outperformed RangeNet21++ by 1.1% in
mIoU. Furthermore, more considerable IoU gains were ob-
served mainly for large object classes, such as ”car” and
”building”. This is because large objects tend to retain their
shapes in images even when the scale is reduced, and the ef-
fect of incorporating scale-equivariance is significant and.
This result indicates that it is practical to incorporate scale-
equivariance into the CNN for processing LiDAR images.

4.3. Equivariance

4.3.1. Metrics

We evaluated scale-equivariance using the similarity of
feature maps for inputs of different scales. Specificaly, con-
sidering the mean squared error (MSE) between the feature
maps and the variance of the feature maps, the equivariance
error is defined as

Error =
MSE

average of the two variances
. (13)

The smaller this value is, the stronger equivariance.

4.3.2. Results and Discussion

Tab. 2 compares the equivariance errors on the Semantic
KITTI dataset. This result shows that REconvNet21 has
a much smaller equivariance error, indicating that REconv
certainly has scale-equivariance.

5. Conclusion

This study proposed a new range-equivariant convolu-
tion for the semantic segmentation of LiDAR images. The
experimental results show that replacing a part of the stan-
dard convolution layer of RangeNet21 with REconv in an
appropriate way improved mIoU on outdoor point cloud
datasets. Furthermore, the evaluation of the equivariance

error showed that REconv exhibited scale-equivariance. In
conclusion, incorporating the scale-equivariance into the
CNN using the proposed method is effective for the seg-
mentation of LiDAR point clouds.
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