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Abstract—We investigate synchronized dynamics of
mutually-coupled semiconductor lasers with low frequency
fluctuations (LFFs). The mutually-coupled semiconductor
lasers show the repeated spontaneous switching of leader-
laggard relationship. Leader-laggard relationship is the
phenomenon that one system in synchronized mutually-
coupled dynamical systems oscillates forward and is called
“leader,” and other system is called “laggard.” We ob-
serve that the leader-laggard relationship is inverted repeat-
edly at the propagation delay time interval and explain the
phenomenon by using the analysis of steady state solu-
tion in the Lang-Kobayashi equations for the dynamics of
semiconductor lasers. We found that the optical frequency
of one laser attracts that of another laser, and the leader-
laggard relationship is exchanged repeatedly .

1. Introduction

Synchronization of chaos has been intensively investi-
gated in coupled nonlinear dynamical systems [1, 2], such
as optically coupled semiconductor lasers [3, 4]. Lag syn-
chronization has been reported in mutually-coupled semi-
conductor lasers with time delayed coupling [5–7]. This
phenomenon is known as the leader-laggard relationship,
where one of the two coupled lasers oscillates in advance
to the other laser by the propagation delay time of the light.
The laser oscillating in advance is called “the leader,” and
the other laser is called “the laggard.” The role of leader-
laggard relationship is dependent of the optical frequency
detuning and the coupling strength. Recently, short-term
exchange of the leader-laggard relationship has been re-
ported [8], where the leader-laggard relationship exchanges
in time for every propagation delay times. However,
the mechanism of the short-term exchange of the leader-
laggard relationship has not been well investigated yet.

In this study, we investigate the short-term exchange of
the leader-laggard relationship for the dynamics of low-
frequency fluctuations (LFFs) in mutually-coupled semi-
conductor lasers. We calculate steady state solutions of
the Lang-Kobayashi equations for mutually-coupled semi-
conductor lasers to understand the relationship between the
short-term exchange and the LFF dynamics [9, 10].
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Figure 1: Model for mutually-coupled semiconductor
lasers with time delay. τ is the propagation delay time of
the light.

2. Numerical model

Figure 1 shows a model for mutually-coupled semicon-
ductor lasers. The optical output from the laser 1 is injected
into the laser 2 after the propagation delay time τ of the
light. The output of the laser 2 is also injected into the laser
1. This coupled system is considered as an infinite dimen-
sional system due to the existence of the coupling delay
time. It is expected to observe synchronization of chaos in
numerical simulations. We show a numerical model known
as the Lang-Kobayashi equations for semiconductor lasers
with time-delayed optical coupling [11].

dE1,2(t)
dt

=
1 + iα

2

[
GN(N1,2(t) − N0)

1 + ε|E1,2(t)|2 − 1
τp

]
E1,2(t)

+ κE2,1(t − τ) exp
[
iθ1,2(t)

]
(1)

dN1,2(t)
dt

= J − N1,2(t)
τs

− GN(N1,2(t) − N0)
1 + ε|E1,2(t)|2 |E1,2(t)|2 (2)

θ1,2(t) = (ω2,1 − ω1,2)t − ω2,1τ (3)

where E and N are the slowly varying complex electric-
field amplitude and the carrier density of the semiconduc-
tor lasers, respectively. The subscripts 1 and 2 represent
the laser 1 and 2, respectively. α = 3 is the linewidth
enhancement factor, GN is the gain coefficient, N0 is the
carrier density at transparency, and ϵ is the gain saturation
coefficient. τp and τs are the photon and the carrier life-
times, respectively. J = 1.2Jth is the injection current of
the lasers, where Jth is the injection current at the lasing
threshold. The second term in the right-hand side of Eq.
(1) represents the optical injection from the other laser. κ
is the coupling strength between the two lasers and τ is the
propagation delay time of the light. θi(t) (i = 1, 2) is the
optical phase difference between the two lasers. In Eq. (3)
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for θi(t), ∆ω is the optical angular frequency detuning be-
tween the laser 1 and 2, and is defined as ∆ω = ω1 − ω2,
where ω is the optical angular frequency of the laser. The
following parameter values are used in our numerical simu-
lations: κ = 31.06 ns−1, τ = 1 ns, and the optical frequency
detuning ∆ f = ∆ω/(2π) = 2 GHz. Other parameter values
are set to be the same as in Ref. [12].

3. Steady State Solution

We show steady state solutions of the Lang-Kobayashi
equation (1) and (2) for the mutually-coupled semiconduc-
tor lasers. We define the steady state solutions of E1,2(t) and
N1,2(t) as Es1,s2 = As1,s2 exp[i(ωs1,s2 −ω1,2)t] and Ns1,s2, re-
spectively. As1,s2 is the steady state solution of the electric-
field amplitude of E1,2. ωs1,s2 is the steady state solution
of the optical angular frequency. The following equations
are obtained by inserting these solutions into Eq. (1) and
(2) and by dividing the complex variables into the real and
imaginary parts.

0 =
1
2

[
GN(Ns1,s2 − N0)

1 + ϵ |As1,s2|2
− 1
τp

]
+ κ

As2,s1

As1,s2
cos θs1,s2(t) (4)

ωs1,s2 − ω1,2 =
α

2

[
GN(Ns1,s2 − N0)

1 + ϵ |As1,s2|2
− 1
τp

]
− κAs2,s1

As1,s2
sin θs1,s2(t) (5)

0 = J − Ns1,s2

τs
− α

2
GN(Ns1,s2 − N0)

1 + ϵ |As1,s2|2
|As1,s2|2 (6)

θs1,s2(t) = (ωs2,s1 − ωs1,s2)t + ωs1,s2τ (7)

Note that Eq. (7) for θs1,s2(t) includes the time t. From the
requirement of constant θs1,s2(t) for the time t, ωs1 = ωs2
need to be satisfied. This requirement indicates that injec-
tion locking is achieved between the two coupled lasers.
We obtain the following conditions for the steady state so-
lutions from Eqs. (4)–(7) and ωs1 = ωs2 = ωs.

(ωs − ω1)(ωs − ω2)

=
κ2(1 + α2)

2
(1 − cos[2(ωsτ + tan−1 α)]) (8)

Ns1,s2 − Nth =
2κ2τs

√
1 + α2 cos[ωsτ] sin[ωsτ + tan−1 α]

(GNτs + ϵ)∆ωs2,s1

+
ϵNth( j − 1)
GNτs + ϵ

(9)

Where Nth is the carrier density at the lasing threshold
(Nth = N0 + 1/(GNτp)).

4. Numerical results

Figure 2 shows the temporal waveform of the mutually-
coupled semiconductor lasers. We show the dynamics of
the laser intensity I(t) = E2

re(t) + E2
im(t), where Ere and Eim
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Figure 2: (a) Temporal waveforms of I(t) for the mutually-
coupled semiconductor lasers. The black and red curves
represent the laser 1 and 2, respectively. (b) Low-pass fil-
tered temporal waveforms of (a). A third-order low-pass
filter with the cut-off frequency of 0.5 GHz is used.

are the real and imaginary parts of E, respectively. Fig-
ures 2(a) and (b) show the original and low-pass filtered
waveforms, respectively. The upper curve (the black curve)
represents the laser 1 and the lower one (the red curve) rep-
resents the laser 2. We can observe fast oscillations over
a few GHz for both the upper and lower curves in Fig.
2(a). Low frequency fluctuations (LFFs) can be clearly
observed as sudden intensity dropouts in low-pass filtered
waveforms of Fig. 2(b). The leader-laggard relationship
can be determined with the order of the dropouts of the two
lasers. In Fig. 2(b), the dropouts of the laser 1 always oc-
curs in advance, indicating that the laser 1 is the leader. The
leader is determined by the sign of the optical frequency
detuning ∆ f . Positive frequency detuning ∆ f > 0 (i.e.,
f1 > f2) in Fig. 2 results in the leader of the laser 1.

To investigate short-term exchange of the leader-laggard
relationship, we calculate the two short-time cross correla-
tions as follows,

C1(t) =

⟨[
I1(t − τ) − Ī1(t − τ)

] [
I2(t) − Ī2(t)

]⟩
σ1(t − τ)σ2(t)

(10)

C2(t) =

⟨[
I1(t) − Ī1(t)

] [
I2(t − τ) − Ī2(t − τ)

]⟩
σ1(t)σ2(t − τ) (11)

where 1 and 2 represent the laser 1 and 2, respectively. Ī(t)
is the mean of the laser intensity for [t − τ, t]. σ(t) is the
standard deviation of the intensity for [t−τ, t]. ⟨·⟩ represents
the time averaging for [t−τ, t]. C1(t) is the cross correlation
function between I1(t−τ) and I2(t). On the contrary, C2(t) is
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Figure 3: Temporal waveforms of the short-term cross cor-
relations C1(t) and C2(t). The black solid and red dashed
curves represent C1(t) and C2(t), respectively. The tempo-
ral waveforms in Fig. 2(a) are calculated from 20 to 40
ns.
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Figure 4: Trajectories of the low-frequency fluctuations of
the mutually coupled lasers in the phase space for (a) laser
1 and (b) laser 2. The phase space consists of the optical
frequency and the carrier density. The orange circles indi-
cate the steady state solutions. The blue arrows represent
the direction of change in the trajectories.

the cross correlation function between I1(t) and I2(t−τ). We
can determine the leader by using the sign of C1(t) −C2(t).
The laser 1 is the leader for C1(t) −C2(t) > 0, and the laser
2 is the leader for C1(t) −C2(t) < 0.

Figure 3 shows the temporal waveforms of C1(t) and
C2(t), calculated from the temporal waveforms in Fig. 2(a)
from 20 to 40 ns . C2(t) decreases at 29 ns and C1(t) re-
mains high correlation when the sign of C1(t)−C2(t) is pos-
itive and the laser 1 is leader, as shown in Fig. 2(b). Next,
C1(t) decreases at 31 ns when the sign of C1(t) − C2(t) be-
comes negative at 31 ns and the laser 2 becomes the leader.
After that, the sign of the correlations is changed for every
propagation delay times τ, and leader-laggard relationship
is exchanged alternately. This is an indication of the short-
term exchange of leader-laggard relationship.

To understand the short-term exchange, we investigate
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Figure 5: Averaged trajectory of the two coupled lasers in
the phase space. The orange circles indicate the averaged
steady state solutions.

the relationship between steady state solutions and trajec-
tory of the low-frequency fluctuations of the mutually cou-
pled lasers in the phase space. Figure 4 shows the attrac-
tor and the steady state solutions of the mutually coupled
lasers in the phase space. Figures 4(a) and (b) represent the
laser 1 and 2, respectively. The horizontal axis corresponds
to the optical frequency f1,2(t) calculated from the optical
phase ϕ1,2(t) as follows.

f1(t) =
ϕ1(t) − ϕ1(t − τ)

2πτ
(12)

f2(t) =
ϕ2(t) − ϕ2(t − τ)

2πτ
− ∆ f (13)

where ϕ(t) = tan−1[Eim(t)/Ere(t)]. The vertical axis is the
normalized carrier density n1,2(t) = 100(N1,2(t) − Nth)/Nth.
The orange circles in Fig. 4 indicate the steady state solu-
tions of the optical frequency fs = ωs/(2π) and the normal-
ized carrier density ns1,s2 = 100(Ns1,s2 − Nth)/Nth.

The intensity dropout occurs around f1,2(t) ≈ −14 GHz,
where n1,2(t) suddenly increases. After the increase of
n1,2(t), the trajectory moves to the direction of the blue ar-
row and the optical frequency f1,2(t) increases to zero. The
trajectory slowly moves to the negative direction of the op-
tical frequency along the lower steady state solutions after
the trajectory arrives at f1,2 ≈ 0. The above-described cy-
cle is repeated. A single semiconductor laser with optical
self-feedback shows a similar behavior in the LFF dynam-
ics [9, 10].

Next, we investigate the averaged trajectory and the
steady state solutions for the laser 1 and 2, as shown in Fig.
5. The averaged trajectory and complete-synchronization
solutions in mutually-coupled semiconductor lasers have
been investigated in [6]. However, in our case, the optical
frequency detuning ∆ f needs to be taken into account. The
horizontal axis of Fig. 5 represents ( f1(t) + f2(t))/2 and
the vertical axis represents (n1(t) + n2(t))/2. The steady
state solutions of the carrier density are also averaged as
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Figure 6: Temporal waveforms of the optical frequency.
The black solid and red dashed curves represent the laser 1
and 2, respectively.

(ns1 + ns2)/2. From Fig. 5, the averaged trajectory itiner-
ates on the lower steady state solutions although the trajec-
tories of the two lasers do not itinerate on the steady state
solutions in Fig. 4.

To investigate the frequency dynamics of the two lasers,
we observe the temporal waveforms of the optical frequen-
cies f1(t) and f2(t) as shown in Figure 6. The black solid
and red dashed curves represent the laser 1 and 2, respec-
tively. Both f1(t) and f2(t) start decreasing at t ≈ 30 ns,
and the sign of f1(t) − f2(t) changes in time for each prop-
agation delay time. In the LFF dynamics of a single laser
with optical feedback, the optical frequency of the single
laser decreases monotonically along the steady state solu-
tions [9, 13]. However, we found that the optical frequen-
cies of the mutually-coupled lasers move up and down in
Fig. 6. This result indicates that the optical frequency
of one laser pulls that of the other laser with time delay,
and the role of the frequency pulling effect is exchanged in
time.

The dynamics of LFFs and the propagation delay time
are important for the observation of the short-term ex-
change of the leader-laggard relationship. The trajectories
of the two coupled lasers moves along the averaged steady
state solutions. Although the mutually-coupled lasers do
not have complete synchronized solutions due to the ex-
istence of the optical frequency detuning, the two lasers
move along the frequency-locked steady state solutions.
However, frequency locking is not always achieved since
the optical frequencies of the two lasers change in time due
to the propagation delay time. The interplay of the fre-
quency locking between the mutually coupled lasers results
in the short-term exchange of the leader-laggard relation-
ship.

5. Conclusions

We investigated the short-term exchange of the leader-
laggard relationship in mutually-coupled semiconductor
lasers. The two lasers show LFF dynamics and one of the
laser always has intensity dropouts in advance, which is
the leader, due to the existence of the optical frequency de-
tuning. We observed the short-term exchange of the leader-
laggard relationship by using short-term cross-correlations.
We also calculated the steady state solutions, which are fre-
quency locked solutions, for the mutually-coupled semi-
conductor lasers to investigate the mechanism of the short-
term exchange of the leader-laggard relationship. We found
that the averaged trajectory for the two coupled lasers in
the phase space itinerates on the steady state solutions, and
the optical frequency locking alternately occurs in the two
lasers. The short-term exchange of the leader-laggard re-
lationship could be a general phenomenon for mutually-
coupled dynamical systems with time delay.
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Danckaert, and I. Fischer, Phys. Rev. E, vol. 83, pp.
056211–1–11 (2011).

[7] M. Ozaki, H. Someya, T. Mihara, A. Uchida, S.
Yoshimori, K. Panajotov, and M. Sciamanna, Phys.
Rev. E, vol. 79, pp. 026210 (2009).

[8] T. Hida, K. Kanno, and A. Uchida, Proceedings of
2012 the International Symposium on Nonlinear The-
ory and Its Applications, vol.1, pp. 399–402 (2012).

[9] T. Sano, Phys. Rev. A, vol. 50, pp. 2719–2726 (1994).
[10] I. Fischer, G.H.M. vanTartwijk, A.M. Levine, W.
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