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Abstract—The “tug-of-war (TOW) model” proposed in
our previous studies [1, 2, 3] is a unique method for par-
allel searches inspired by the photoavoidance behavior of
the single-celled amoeba, the true slime mold Physarum.
In the TOW model, many branches of the amoeba act as
search agents to collect information on light stimulations
while conserving the total sum of their resources (volume).
We showed that the nonlocal correlation via resource con-
servation can be advantageous to manage the “exploration–
exploitation dilemma” for solving the multi-armed bandit
problem.

In this study, we investigate the effect of the information
from the other branch on the TOW model’s performance,
for the purpose of improving the model. We improve the
TOW model so that it can exhibit better performances re-
gardless of the reward probabilities.

1. Introduction

We consider that there must be some crucial differences
between biological organisms and digital computers with
respect to their information processing. We expect that
biological organisms are good at dealing with some kind
of problems. In the amoeba’s body (the true slime mold
Physarum (Fig. 1A)), a constant amount of intracellular
protoplasmic sol shuttles through tubular channels, while
its extracellular gel layer (ectoplasm), like a sponge, rhyth-
mically oscillates the contraction tension to squeeze and
absorb the sol (Fig. 1B). While the amoeba oscillates its
branches to collect environmental information, the volume
of the sol flowing through its body remains constant, unless
nutrients are provided. We are interested in how this phys-
ical conservation law affects the information processing of
the amoeba [1, 2, 3, 4]. To elucidate this issue, we con-
sidered the “multi-armed bandit problem” because it is re-
lated to the difficulties of biological organisms faced while
adapting to uncertain environments.

In this study, we focused on the two-armed bandit prob-
lem stated as follows. Consider a slot machine that has 2
arms. Both arms have individual reward probabilities PA

and PB. At each trial, a player pulls one of the arms and
obtains some reward, for example, a coin, with the cor-
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Figure 1: (A) An individual unicellular amoeba of the true
slime mold Physarum polycephalum (scale bar = 7 mm).
(B) Schematic illustration of the amoeba’s body architec-
ture.

responding probability1. The player wants to maximize
the total reward sum obtained after a certain number of se-
lections. However, it is supposed that the player does not
know these probabilities. How can the player gain maximal
rewards? The problem is to determine the optimal strat-
egy for selecting the arm which yield maximum rewards
by referring to past experiences. In the original form of
the problem, the player was allowed to pull only one arm
at each trial. However, to explore the advantages of par-
allel computing, we allowed the player to simultaneously
pull both the arms. With this modification, the situation
becomes more realistic, as it were a “two-bandit problem.”
The new form of the problem considers 2 slot machines A
and B, each having only 1 arm. Machines A and B have
reward probabilities PA and PB, respectively.

The player has to “explore” many unknown machines
to gather much information to determine the best machine.
However, these explorations are risky because the player

1In this study, we assume that each pull results in a reward of fixed
size with the given probability. We are dealing with the simplified variant
of the general two-armed bandit problem.
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may lose considerable rewards that could have been “ex-
ploited” from the already-known best machine. Thus, there
is a trade-off between “exploration” and “exploitation.”
Living organisms generally encounter this “exploration–
exploitation dilemma” because they have to survive in
an unknown world. In order to survive, organisms need
to adapt to the unknown situations by overcoming this
dilemma. We speculate that organisms would have devel-
oped some efficient methods to overcome this dilemma.

In our previous studies [1, 2, 3], we proposed the “tug-
of-war (TOW) model” which is a unique method for par-
allel searches inspired by the photoavoidance behavior of
the true slime mold amoeba. The TOW model is a bio-
inspired computing method capable of effectively solving
problems without necessarily being a biological model for
reproducing an amoeba’s behavior. In our previous reports,
we showed that the nonlocal correlation via resource con-
servation can be advantageous to manage the “exploration–
exploitation dilemma” for solving the multi-armed bandit
problem. We showed that the average accuracy rate of the
TOW model is higher than those of well-known algorithms
such as the modified ε-greedy algorithm and modified soft-
max algorithm. We also showed that the TOW model ef-
fectively adapts to a changing environment in which the
reward probabilities dynamically switch.

In this study, we investigate the performances of the ex-
tended version of the TOW model for the two-armed bandit
problem, and show that the optimized weight parameters
depend on reward probabilities. This fact suggests that the
performance of the TOW model can be further enhanced.
We propose an improved TOW model which can exhibit
better performances regardless of the reward probabilities.

2. Models

2.1. Tug-of-war Model

On the basis of the photoavoidance behavior of an
amoeba, we proposed the tug-of-war (TOW) model in our
previous studies [1, 2, 3]. Consider that the shape of an
amoeba is like a slug, as shown in Fig. 2. Variables xA

and xB correspond the volume increments in branch A and
B, respectively. If xA (xB) is greater than 0, we consider
that the amoeba selects A (B). Subsequently, light stimuli
are applied to the branch A (B) with the probability 1 − PA

(1− PB) as a “punishment,” i.e., an effect opposite to a “re-
ward.” In this model, there can be 4 types of selections: A,
B, A and B, and no selection at each time step.

The volume increments xA and xB are determined by the
following difference equations:

xA(t + 1) = xA(t) + vA(t), (1)
xB(t + 1) = xB(t) + vB(t), (2)

vA(t) = vA(t − 1) + aA(t), (3)
vB(t) = vB(t − 1) + aB(t). (4)
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Figure 2: TOW model.

Here, vA(t) and vB(t) denote velocities of the corresponding
volume increment, and aA(t) and aB(t) denote accelerations
of the corresponding volume increment.

The internal resource deviation from the constant
amount of the total resource V, S (t), is determined by the
following equation:

S (t + 1) = S (t) −
(
vA(t) + vB(t)

)
. (5)

If the initial conditions (xA(0), xB(0), vA(0), vB(0) and S (0))
are set to zero, the value xA(t) + xB(t) + S (t) will always be
zero. This implies that S (t)=−(xA(t)+xB(t)), ensuring the
conservation of the total resource V.

In order to incorporate the learning mechanism into this
model, we introduced local biases of internal resource QA

and QB for the resource on branches A and B, respectively
(see the bottom figure in Fig. 2). For every time t, the num-
ber of selections and number of stimulations are accumu-
lated in QX(t) such that

QX(t) = µ
(
NX − 2 LX

)
, (6)

where NX is the number of selection X (A or B) until time
t, and LX is the number of light stimulations on X (A or B)
side until time t. Here, µ is the learning parameter.

By referring to the information on the number of selec-
tions and number of light stimulations, we assumed that a
local bias of the internal resource is formed on each branch
A or B. Thus, the local resource deviations S A(t) and S B(t)
are given by

S A(t) = S (t) + QA(t − 1) − QB(t − 1), (7)
S B(t) = S (t) + QB(t − 1) − QA(t − 1). (8)

This implies that the communication between branch A and
branch B is realized via resource conservation.

In the model, accelerations are essential variables (driv-
ing force). The acceleration aX(t) (X= A or B) is deter-
mined from Table 1; it depends on the local resource de-
viation S X(t) and light ON-OFF condition. The intrinsic
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Table 1: Rule for determining acceleration aX (X= A or B)

S X < 0 S X = 0 S X > 0
OFF 0 +1 +1
ON –1 –1 0

dynamics of the model including the rule given in Table 1
are deterministic. However, variables aA(t) and aB(t) are
determined stochastically, as the external light stimuli are
applied in a probabilistic manner.

If the amoeba selects A, without the light stimuli (OFF),
the acceleration aA(t) = +1 will be added to vA(t), except
in the case of S A(t) < 0. This implies that if the local re-
source is abundant (S A is zero or a positive value), the no
light stimuli (OFF) induce an increase in vA. If the amoeba
selects A in the presence of the light stimuli (ON), the ac-
celeration aA(t) = −1 will be added to vA(t), except in the
case of S A(t) > 0. This implies that if the local resource
is scarce (S A is zero or a negative value), the light stimuli
(ON) induce a decrease in vA. In this way, the photoavoid-
ance behavior of the amoeba is implemented in this model.

3. Results

3.1. Optimization of Weight Parameters

In order to investigate the effect of LX in Eq. (6) on the
TOW model’s performance, we adopt the following form,
instead of Eq. (6):

QX(t) = µ
(
NX − (1 + w) LX

)
. (9)

Here, w is the weight parameter. In the original TOW
model, the weight parameter w is always 1.

The above form, Eq. (9), is equivalent to the following
form:

Q′X(t) = µ
(
NX − LX + w LY

)
, (10)

because of the fact that QA − QB = Q′A − Q′B in Eqs. (7) and
(8). Here, Y is A if X = B, or B if X = A. In the form (10),
the first two terms denote the information of success (no
light stimulation) in a branch, while the third term denotes
the information of failures (light stimulation) of the other
branch. The weight parameter w can be interpreted as the
contribution weight from the other branch.

How does this parameter w affect the model’s perfor-
mance? The performance of the model is evaluated in ter-
mes of the “accuracy rate”; accuracy rate is defined as the
rate of correct (higher probability) selections made until t.
Figure 3 shows the average accuracy rates for the models
with PA = 0.4 and PB = 0.6 (circle), PA = 0.4 and PB = 0.7
(square), PA = 0.4 and PB = 0.8 (triangle up), PA = 0.3
and PB = 0.6 (diamond), and PA = 0.45 and PB = 0.6
(triangle down), respectively. The horizontal axis denotes
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Figure 3: Optimized average accuracy rate of the TOW
model for PA = 0.4 and PB = 0.6 (circle), PA = 0.4 and
PB = 0.7 (square), PA = 0.4 and PB = 0.8 (triangle up),
PA = 0.3 and PB = 0.6 (diamond), and PA = 0.45 and
PB = 0.6 (triangle down), respectively.
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Figure 4: Optimized average accuracy rate of the TOW
model for PA = 0.4 and PB = 0.6 (circle), and PA = 0.6
and PB = 0.65 (square), respectively.

the weight parameter w, and the vertical axis denotes the
average accuracy rate at the number of selections = 500 for
1,000 samples of the TOW model. At each weight param-
eter w, the learning parameter µ was optimized in order to
obtain the highest average accuracy rate. The elliptic curve
on each line denotes its peak. The optimal ws (peaks in
Fig. 3) depend on reward probabilities. This fact suggests
that the performance of the TOW model can be further en-
hanced. We can summarize the dependence as follows: (I)
The optimal w is 1.0 if reward probabilities have a symme-
try (the mean value of reward probabilities is 0.5.). (II) If
the mean value is larger (smaller) than 0.5, the optimal w
is also larger (smaller) than 1.0. (III) The shift of the opti-
mal w from 1.0 is proportional to the deviation of the mean
value of reward probabilities from 0.5.

From Fig. 3, the parameter w = 1.0 is the best choice
except for the cases in which the problem is difficult (|PA −
PB| is small) and does not have the symmetry (PA + PB ,
1). We call these cases “non-symmetric difficult problems.”
Figure 4 shows the average accuracy rate for such case,
namely the model with PA = 0.6 and PB = 0.65 (square).
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In the same way, the elliptic curve on each line denotes its
peak. In this case (PA = 0.6 and PB = 0.65), the peak is
about 0.732 at w = 1.4. This value is not a little larger
than 0.690 at w = 1.0 (original TOW). Therefore, we have
to improve the TOW model so that the model can exhibit
better performance even for such cases. It is easy to de-
velop the model which can exhibit the best performances
if we know the reward probabilities PA and PB. However,
we can use only estimates for those probabilities, such as
qX=

NX − LX
NX

, (X = A or B).

3.2. Improved TOW Model

We investigated performances of several improved mod-
els which were found by using heuristic method, and even-
tually found the two best forms. If we substitute w=1.0+γD
to Eq. (9), we can obtain the following equation:

QX(t) = µ
(
NX − 2 LX − γ D LX

)
. (11)

Here, γ is a parameter, and D is the deviation from the sym-
metry defined as follows:

D =
1
2

(
qA + qB − 1

)
, (12)

=
1
2

(
1 − LA

NA
− LB

NB

)
. (13)

Computer simulation studies showed that γ = 1.0 is the
best for its performance.

If we substitute γ=2 and D = ( 1/2 − LX/NX ) to Eq. (11),
instead of Eq. (13), we can obtain the following simplified
form:

QX(t) = µ
(
NX − 2 LX (3/2 − LX/NX)

)
. (14)

In fact, these two improved models, Eqs.(11, 13) and (14),
can exhibit better performances. For example, in the case
of PA = 0.6 and PB = 0.65, the average accuracy rate at the
number of selections = 500 is 0.708, which is larger than
0.690 in the original TOW model although the value is still
smaller than 0.732 at w = 1.4. In the other cases except for
“non-symmetric difficult problems,” these models exhibit
almost the same performances as the original TOW model.

4. Conclusions and Discussions

We improved the “tug-of-war (TOW) model” which con-
ducts unique parallel searches using many nonlocally cor-
related search agents. The conservation law entails a “non-
local correlation” among the branches, i.e., volume incre-
ment in one branch is immediately compensated by volume
decrement(s) in the other branch(es). This nonlocal corre-
lation was shown to be useful for decision making in the
case of a dilemma. In our previous reports [1, 2, 3], the
average accuracy rate of the model is higher than those of
well-known algorithms such as the modified ε-greedy al-
gorithm and modified softmax algorithm. Moreover, the

model flexibly adapts to changing environments, a prop-
erty essential for living organisms surviving in uncertain
environments.

In this study, we investigated performances of the ex-
tended version of the TOW model for the two-armed bandit
problem. We added the weight parameter w to the original
TOW model, and show that the optimized weight parame-
ters depend on reward probabilities. This implied that the
TOW model can be improved for better performance. Us-
ing heuristic method, we developed improved TOW mod-
els which can exhibit better performances regardless of the
reward probabilities. The improved models were the best
improvements among those we have ever examined. How-
ever, whether a better improvement will be possible is still
open problem.

This TOW model is applicable to the Monte-Carlo tree
search which is used in algorithms for the “game of
GO” [5, 6]. We believe that the variant of the TOW model
will become one of the best promising approaches to de-
velop the effective algorithm due to its parallelism and non-
local correlation between search agents.
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