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Abstract—This paper investigates an interesting
phenomenon in a pair of coupled chaotic oscillators.
Each individual oscillator behaves chaotically and has
an unstable periodic orbit that dominates the chaotic
attractor. We experimentally observe that the sta-
ble periodic orbit, which is quite close to the unstable
periodic orbit, can be induced by an extremely-weak
diffusive connection in the Shinriki-Mori circuits. This
phenomenon is examined by the bifurcation analysis.

1. Introduction

Control of chaos, which is a stabilization of unstable
periodic orbits (UPOs) embedded within a chaotic at-
tractor, has received considerable attention for more
than two decades in nonlinear science. Various con-
trol methods have been proposed and applied to real
systems, including electronic circuits, mechanical sys-
tems, and chemical reactions [1, 2, 3]. The two typ-
ical control methods are well known: the state feed-
back control method and the delayed feedback control
method. The state feedback control method, which
was proposed by Ott, Grebogi, and Yorke, has been
recognized as the OGY method [4]; the delayed feed-
back control (DFC) method, which was proposed by
Pyragas, has received considerable attention, not only
in the field of nonlinear science [5], but also in control
theory [6].

These methods are meant for controlling a single
chaotic system; however, from a practical viewpoint,
it is important to control spatiotemporal chaos in cou-
pled systems [7, 8]. There are two solutions to this
control problem. The first solution is that the OGY
method or the DFC method is modified for coupled
systems: the decentralized OGY or DFC controllers
can stabilize the unstable states in coupled systems
[7, 8, 9, 10, 11]. Since this solution requires many de-
centralized controllers, it is costly to implement them
in practical situations. The second solution is that
time delays are used in the connections [12, 13]. The
main advantage of this solution is that there is no need
to use controllers. Fiedler et al. showed that an UPO
in the coupled normal forms for Hopf bifurcation can
be stabilized; however, this method requires an addi-

tional no-delay connection to maintain the ani-phase
state [12]. Choe et al. reported that the UPO in the
coupled forms can be stabilized by the delay connec-
tion, but the connection has to rotate the signal phase
[13]. These features of the second solution indicate
that a simple diffusive delay connection cannot stabi-
lize it. Furthermore, the two solutions can be used
only for the UPO in the normal form; thus, the delay
connections cannot stabilize UPOs in general chaotic
systems, since the shapes of such UPOs are different
from that of the normal form.

Zhan et al. demonstrated on numerical simula-
tions that a simple weak-diffusive no-delay connec-
tion, which is the simplest connection, can induce a
stable periodic orbit in vicinity to the UPO embed-
ded within the single chaotic system [14]. The main
advantage of this method is that the implementation
cost of the connection is quite low compared with the
above two solutions. The reasons are as follows: there
is no need to use the controllers and the delay con-
nection; as coupling strength is extremely weak, the
signals in the connection are extremely small. On the
other hand, its disadvantages are as follows: the range
of coupling strength for stabilization is narrow and the
desired UPO has to dominate the chaotic attractor.

This connection has potential ability to be widely
used in practical coupled chaotic systems; however,
there is no experimental verification of such stable pe-
riodic orbit. Furthermore, the reason why this phe-
nomenon arises is still not clear. The main purpose
of this work is to provide an experimental verifica-
tion of this phenomenon by using the Shinriki-Mori
circuits [15]. In addition, we investigate the detailed
phenomenon on the basis of the bifurcation analysis.

2. Coupled chaotic circuits

Two Shinriki-Mori circuits (i.e, circuits a and b) are
coupled by a resistor as shown in Fig. 1: they are
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Figure 1: Shinriki-Mori circuits coupled by resistor R.
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Figure 2: Bifurcation diagram of a chaotic oscillator
without connection (1/R = 0): Poincare section Σ :=
{(i1, v1, v2) : v2 = 0, v1 < 2.2}.
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Throughout this paper, the circuit parameters are
fixed at

C1 = 0.068μF, C2 = 0.047μF, L = 10mH.

The coupling strength is described by 1/R.
Figure 2 shows the bifurcation diagram of the

chaotic oscillator without connection (1/R = 0). The
parameter g is set to g = 0.893 × 10−3S, where the
period-three unstable orbit dominates the chaotic at-
tractor. The circuits behavior without connection
(1/R = 0) on numerical simulations is illustrated in
Fig. 3. These circuits are coupled by the extremely
weak connection (1/R = 3.5 × 10−5); the circuits be-
havior is shown in Fig. 4, where the period-three stable
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Figure 3: Circuits behavior without connection
(1/R = 0) (numerical simulation).
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Figure 4: Circuits behavior with connection (1/R =
3.5 × 10−5) (numerical simulation).

orbits are observed. These orbits are extremely close
to an UPO embedded within the single chaotic circuit,
but they are slightly different from it.

In order to experimentally verify the above nu-
merical results, the two circuits are implemented by
popular-priced circuit devices, which have an error of
several percent. The parameter g of each circuit is ad-
justed such that the period-three unstable orbit dom-
inates the chaotic attractor1. The circuits behavior
without connection (1/R = 0) and with connection
(1/R = 1.9× 10−5) are shown in Figs. 5 and 6 respec-
tively. It can be seen that the stable periodic orbits are
experimentally induced by the extremely weak connec-
tion. These numerical and experimental results imply
that the stable periodic orbit induced by the extremely
weak connection occurs in the coupled Shinriki-Mori
circuits.

1g is fixed close to the period-three window.
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(a) oscillator a (b) oscillator b

Figure 5: Circuits behavior without connection
(1/R = 0) (circuit experiments). Horizontal axis: v1

(0.5 V/div); vertical axis: v2 (0.5 V/div).

(a) oscillator a (b) oscillator b

Figure 6: Circuits behavior with connection (1/R =
1.9 × 10−5) (circuit experiments). Horizontal axis: v1

(0.5 V/div); vertical axis: v2 (0.5 V/div).

3. Discussion

This section investigates the extremely-weak con-
nection induced stable periodic orbits. Figure 7(a)
shows the bifurcation diagram (va

1 ∈ [2.09, 2.14]) of
the coupled circuits against the coupling strength
1/R. The similar diagrams are observed for va

1 ∈
[1.70, 1.95], [1.04, 1.12]; thus, we see the period-three
stable orbit for 1/R ∈ [3.01×10−5, 3.99×10−5] and the
period-six stable orbit for 1/R ∈ [2.05 × 10−5, 3.01 ×
10−5]. Figure 7(b) illustrates the stable and unsta-
ble periodic orbits which are numerically derived us-
ing the software BUNKI2. From these figures, it can be
seen that, without connection (1/R = 0), the period-
three unstable orbit corresponding to � in Fig. 7(b)
is embedded within the chaotic attractor. The period-
three orbit is unstable for 1/R ∈ (0, 3.01 × 10−5). At
1/R � 3.01 × 10−5, the unstable orbit becomes stable
via the period-doubling bifurcation. The period-three
orbit is stable for 1/R ∈ [3.01 × 10−5, 3.99 × 10−5]. It
merges with the period-three unstable orbit at 1/R �
3.99 × 10−5; then, they disappear via the saddle-node
bifurcation.

2http://bunki.sat.iis.u-tokyo.ac.jp/BUNKI/
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Figure 7: Bifurcation diagram and stable/unstable pe-
riodic orbits (va

1 vs. 1/R) on Σ: (a) bifurcation dia-
gram; (b) stable/unstable periodic orbits.

4. Conclusion

This paper experimentally showed that the stable
periodic orbit extremely close to the UPO is induced
by the simple weak-diffusive no-delay connection in
the well known Shinriki-Mori circuits. Furthermore,
this phenomenon was investigated by the bifurcation
analysis.
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