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Abstract—We here introduce estimating methods of
functional connectivities of the networks, under the con-
dition that the observable variables are composed of dis-
crete and continuous ones. The causality estimation in the
frequency domain is based on the estimation of the cross-
spectrum density matrix. So, the main problem is how do
we estimate the cross-specral density matrix. The cross-
spectral density matrix is estimated through the multi-
variate auto-regressive models for the continuous variables.
In the current study, the discrete observables were assumed
to be event time-series (e.g. timing of the earth quake and
firing timing of the nerve cells). For the discrete variables,
the cross-spectral density matrix can be estimated by the
Fourier transformation and multitaper methods. In the cur-
rent study we also consider the situation that the observed
variables are composed of the discrete and continuous vari-
ables. For example, recording of the brain signals often
provides the spike event time-series and the EEG or LFP
signals. The spike signal is discrete and the LFP is contin-
uous signals. For such cases, the event-triggered continu-
ous averaging is useful method for the cross-spectral den-
sity matrix estimation. The current manuscript provides the
outline of the estimation methods for the functional con-
nectivity.

1. Introduction

The systems around us are comprised of the networks.
The network structure however is invisible in many cases,
e.g., neural systems, economy system, biological systems,
and so on. Therefore, to understand the system, inferring
the network structure is inevitable. The network structure
can be categorized into functional and not functional. Even
the nodes are connected, the network is not functional if
the connection is not used. We call the collection of the
meaningful connections the functional network. The func-
tional network sometimes called the causal network. Esti-
mating the functional network is first proposed by Wiener
and it was formulated by the Granger [10, 5]. The Granger
causality assumes the linear Gaussian stationary process.
The definition of the Granger causality is as follows,

Definition 1 (Granger 1969) We say that X,(¢) is caus-
ing Xo(t)(X1(t) = Xo(?) if we are better able to predict
X\ (t) using all available information than if the informa-

tion apart from X,(t) had been used.

In other words,

Definition 2 [f the knowledge of the past of both X,(t) and
X (%) reduces the variance of the prediction error of X»(t) in
comparison with the knowledge of the past of X,(t) alone,
then a signal X,(t) causes the signal X,(t) in Granger
sense.

In short, if knowing time series X, helps predict the future
of the other time series X, X, “Granger causes” X;. This
is applicable to a criterion of conditional independence on
probability distributions that is generally applicable to sta-
tionary and non-stationary stochastic processes.

To study the functional connectivities of the real sys-
tems, it is important how the connectivities are related
with different frequency bands which are functionally rel-
evant [2]. In fact, the brain uses several frequency bands
and their combinations to process the sensory informa-
tion. To analyze the functional connectivities ranging fre-
quency bands, several causality measures in spectral do-
main were proposed, comprising the Geweke spectral mea-
sures of Granger causality (for bi-variate signals, [3]; for
multi-variate signals, [4]), the Directed Transfer Function
(DTF) [7], and the Partial Directed Coherence (PDC) [1].
These measure were applied to analyze brain signals.

The above studies analyzed continuous signals. Some
studies, on the other hand, analyses the functional connec-
tivities by using the event time series [9]. For the brain,
the event time-series corresponds to the spike timing of the
neurons [6, 8].

In the current study, we used both discrete (event) time-
series and continuous time-series to estimate the functional
connectivities. In the brain, the spike signal and LFP (espe-
cially lower frequency range) is relevant and have different
functions [11]. We here use the event triggered continuous
time-series averaging to estimate the cross-spectral density
matrix. The estimation accuracy will be assessed by some
toy-models.
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Figure 1: Schematic drawing of the estimation of the cross-spectral density matrix from the discrete and continuous

time-series.

2. Causality estimation

2.1. The causality estimation

The estimation of the functional connectivities have re-
lied on the cross-spectral density matrix,

Sul(fH) S Sin()

Sau(f)  Sa(f) San(f)
S(H = : : :

Snvi(f)  Sn(f) Swn(f)

The spectrum matrix can be decomposed into transfer func-
tion H(f) and covariance matrix X,

S(f) = H(HZH' (f)

where T denotes complex conjugate and matrix transpose,

Hu(f) Hi(f) Hin(f)
Hy (f) Hxn(f) Hon(f)
H(f) = : : : ’
Hyi(f) Hyna(f) Hyn(f)
and
O’%l o1 OIN
s_| 022 oo
ON1 OnN2 0'12.\,1\/

Coherence and causality measures in frequency domain
By using the cross-spectral density matrix, the ordinary co-

herence is defined as
NIk
Sa(NHS (N

The Granger causality in the frequency domain,

C(H) =

S
GCij(f) = In #
= 1= (P
The directed coherence,
o jiHii(f)

DCii(f) =

VSi(H)

The directed transfer function,

H;()
VI ()R

2.2. Continuous variables

DTF;i(f) =

The causality measures in the frequency domain is based
on the cross-spectral density matrix, so the problem is how
do we estimate the cross-spectral density matrix from the
observable variables. The cross-spectrum density matrix
of the continuous variables are obtained through the multi-
variate auto-regressive models.

In the situation that time-series x,, (n = 1,2, ...,N) are
available, each P-th dimensional linear mono-variate auto-
regressive model is described as,

P

(0 = D an(Dxalt = ) + (1),

p=1
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and P-th linear multi-variate auto-regressive model is de-
scribed as,

N P
(0= D" ann(P)xnlt = )+ wy(0),

m=1 p=1

where, u,(f) and w, (¢) are estimation error at moment ¢.

The estimation error of the mono-variate auto-regressive
and multi-variate auto-regressive model of x,, (n = 1,2) is
described as follows,

T
1
2X1|X1 T-p Z u%(l‘),
=1
1 T
_ 2
E.X2|X2 - T _ p lzzl uz(t)3
1 T
ZX] |x1,x2 = T _ 2p Z W%(t)7
=1
1 T
2x2|x2,x1 = T _ 217 Z W%(t)
=1

If the causality x, — x; is existed, the estimation error of
the multi-variate model is expected to be reduced relative
to the estimation error of the mono-variate auto-regressive
model. Namely, it is expected that X, ., < Zy-
From this, we define linear time domain Granger causal-
ity (LTGC) of x; for x; as

z
LGC, v =1n X1 X1

>

Tl
and LTGC of the opposite direction as

z
LGC,, .y, = In 212

EXI [x2,x1

Statistical significance

In the case that x, — x; has no causal relationships,
aio(p) = 0for p = 1,...,P. Then the statistical signifi-
cance based on the Fisher’s test is as follows,

T —2p S wit) = X wa()

p Sy wa(0)
T-p

FLGC

X2—X]

T—2p)

(exp(LGCypmy,) - )

Partial Directed Coherence

The partial directed coherence is described from the spec-
tral representation of the auto-regressive models. Suppose
that the multi-variate auto-regressive model is expressed as
follows,

x1(2) x1(t - p) wi ()

P
:ZA,, : + : ,

w ] P L a—p | L

ar1(p) ai2p) ain(p)
Ap = : : :
ani1(p) ana2(p) ann(p)

Then, the PDC is defined as follows,
Aji(f)

VEb AP

PDC.,;(f) =

where, A(f) = §:1Ake’””fp, A(f) = I —A(f), I is P-
dimensional identity matrix.
Model order

To apply the AR model to the observations, the dimension
of the underlying system is usually unknown. In the current
study, we used Akaike Information Criterion (AIC) for the
estimation of the dimension of the model order.

Firstly, the estimation error is assumed to follow the nor-
mal distribution. Then, for N data and P degrees of free-
dom statistical model that have the maximum log likeli-
hood [ = In L, we calculated AIC,

AIC = -2[+2P. (1)

The maximum log likelihood model of the regressive

. N
model is [ = —5{1 + In(270?)}, and

AIC = NIn(2no?) + N + 2P. )

In the current study, the dimension P was determined in the
mono-variate auto-regressive model, and the same P was
applied to the multi-variate auto-regressive model.

2.3. Discrete variables

Fourier transformation
The cross-spectral density matrix of the event time-series
are obtained by the Fourier transformation of the event se-
ries,

k

N(f) = ) expnft),

i=1
where ¢; is the event timing.
Multitaper method
The multitaper method, a variation of the Fourier transfor-
mation, is useful and often used to estimate the power spec-
trum of the time series,

k
N(f ) = " it expafty),
i=1

where hy, € {hi},’f:1 is data taper. The multitaper method is
used in the situations,

1. to estimate the power spectrum of short time-series,

2. to estimate the power spectrum of the short time-series
segments of the long time-series, to evaluated tempo-
ral variation of the power spectrum.
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For situation (2), the wavelet transformation is often used
instead. By using the multitaper method, the spectrum ma-
trix estimation is

1

Sl = 5oxT

K
D NN
k=1

where * denotes matrix transposition and complex conju-
gate.

Kernel convolution

The other way to estimate the cross-spectral density ma-
trix is convolution of the kernel function. In this study, the
kernel function is assumed to be the Hanning window.

2.4. Discrete and Continuous variables

The purpose of the current study is to estimate the cross-
spectral density matrix from both the discrete and contin-
uous observable signals. On the situation that both spike
and continuous variables are available, the event triggered
continuous averaging (ETCA) is applicable (Fig.2). The
ETCA is called spike-triggered LFP (EEG) averaging in
the neuroscience field. The power spectrum of the ETCA
is used as the cross-spectrum density matrix.

I I 1 discrete (event)

MMWWWNMWWW continuous
Y
M
averaging ¥

~.r~

event-triggered continuous average

Figure 2: Schematic drawing of the discrete triggered con-
tinuous signal averaging.

3. Conclusion

We here introduced the outline of the estimation methods
for the functional connectivities. Those methods will be
applied to some toy-models, and the result will be shown
on the conference.
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