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Abstract—Complex responses, including chaotic re-
sponses, were observed through physiological experiments
with biological neurons. To include these complex re-
sponses, the chaotic neuron model was proposed. Chaotic
dynamical systems have been applied to logical systems,
and to information and signal processing systems. In this
paper, we propose a dynamic logic element with a chaotic
transition region using the chaotic neuron model. Logic
functions of the proposed element can be dynamically
changed through external signals, allowing a single logic
element to serve several logic functions. As an illustra-
tion, we implement an EXOR logic element with switched-
capacitor circuit techniques implementing chaotic transi-
tion responses. In the circuit implementation, we sim-
plify the original 2-neuron circuit into a 1-neuron circuit
by employing a simple nonlinear function circuit. From
circuit experiments, we confirm the EXOR characteristics
and chaotic transition regions of the proposed circuit.

1. Introduction

The McCulloch–Pitts neuron model approximates a real
neuron through logical functions [1]. A network using this
model can constitute any logic function with proper thresh-
olds and coupling coefficients.

Chaotic and periodic responses have been observed
through electrophysiological experiments with a squid gi-
ant axon, and using numerical analyses according to the
Hodgkin–Huxley model [2]. The Hodgkin–Huxley model
is important for research on high-level information process-
ing in the brain. The Hodgkin–Huxley model is complex,
however, and uses many parameters. Simulations and anal-
yses are therefore difficult for large-scale neural networks
consisting of Hodgkin–Huxley neurons.

In contrast, the chaotic neuron model proposed in [3]
qualitatively represents the chaotic responses of real neu-
rons. In other areas, too, research on chaos-based infor-
mation and signal processing is a very active field [4, 5].
Moreover, dynamic computing with chaotic logic devices
has been suggested [6].

In this paper, we propose a logic device that includes a
chaotic transition state and uses the chaotic neuron model.

*Currently with the Graduate School of Information Science and
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Logic functions of the proposed circuit can be dynamically
changed. We furthermore experimentally construct the pro-
posed device using switched-capacitor chaotic neuron cir-
cuits, and confirm the fundamental properties of the pro-
posed circuit through experimentation.

2. Chaotic Neuron Model

The chaotic neuron model [3] is described by

y (t + 1) = ky (t) +
N∑

j=1

v jA j (t) − αx (t) − θ (1 − k) ,(1)

x (t + 1) = f (y (t + 1)) , (2)

where y (t), x (t), and A j (t) are the internal state, the out-
put, and the jth input of the chaotic neuron, respectively,
at a discrete time t. k (0 ≤ k < 1) is the damping factor of
the internal state, α (α ≥ 0) is a parameter for the refrac-
toriness, θ is a threshold, and v j is a connection strength
from the external input A j (t). f (y) is a continuous output
function given by

f (y) =
2

1 + exp (−y/ε)
− 1, (3)

where ε is a gain parameter.

3. Logic Circuit with Chaotic Neuron Model

3.1. Construction of a logical device

We relate the input–output characteristic of the chaotic
neuron and logic states as follows. As an example, Fig. 1
shows the input–output characteristic of a chaotic neuron
that has two inputs A1 and A2 with k = 0.5, α = 0.8,
ε = 0.03, v1 = v2 = 1, and θ = −2.

We set the value 1 to logical “true,” and −1 to logical
“false.” In Fig. 1, when A1 ' A2 ' −1, the output is −1,
therefore corresponding to false near the dotted line. When
A1 ' 1 and A2 ' −1, or vice versa, the value A1+A2 is near
the solid line in Fig. 1, and the output value is 1 (true). For
A1 ' A2 ' 1 (near the chain line), the output is 1 (true). As
a consequence, with A1, A2 ∈ {−1, 1}, the chaotic neuron
in this example operates as a logical OR function. Table 1
summarizes the truth table of the above operation.
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Fig. 1: Input–output characteristic of a chaotic neuron
model with two inputs A1 and A2 (k = 0.5, α = 0.8, ε =
0.03, v1 = v2 = 1, θ = −2).

Table 1: Truth table for the characteristic of the chaotic
neuron with two inputs shown in Fig. 1.

A1 A2 x(t)
−1 −1 −1
−1 1 1
1 −1 1
1 1 1

Figure 2 shows another example with θ = 2. Here, when
A1 ' A2 ' 1 the output is false, that is, the output value
is −1 near the dotted line. Moreover, near the solid line
the output is −1,(false) for A1 ' 1 and A2 ' −1, and vice
versa. The output is 1 (true) near the dash-dotted line in
Fig. 2 where A1 ' A2 ' 1. In this case, therefore, the
chaotic neuron operates as a logical AND function.

As shown in the above examples, resulting logic func-
tions can be changed according to the value of θ. In addi-
tion, if we set v1 = v2 = −1 in Fig. 1 and Fig. 2, NAND
and NOR functions are realized, respectively.

Figure 3 highlights the response for the input range
−2 < A1 + A2 < 0. As shown in the shaded area, the re-
sponse includes periodic and chaotic states. Figure 4 shows
the longtime average of x(t) in Fig. 3. We can exploit the
transition characteristic of the chaotic neuron as a novel
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Fig. 2: Input–output characteristic of the chaotic neuron
(θ = 2.k = 0.5, α = 0.8, ε = 0.03, v1 = v2 = 1).
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Fig. 3: Response for the intermediate input values of the
chaotic neuron (k = 0.5, α = 0.8, ε = 0.03, v1 = v2 = 1,
θ = −2).
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Fig. 4: Long-time average of x(t) in Fig. 3.

computational device. Moreover, the characteristic can be
dynamically controlled, as demonstrated above.

Next, we construct an EXOR logic circuit with two cas-
caded chaotic neurons. For intermediate input values, the
EXOR circuit also shows chaotic and periodic responses.
We start from an EXOR circuit consisting of two chaotic
neurons, as shown in Fig. 5. In Fig. 5, we set v11 = v12 =

−1 and θ1 = −2 in the first neuron, and v21 = v22 = 1,
v3 = 2, and θ2 = 2 in the second neuron. We set k = 0.5,
ε = 0.03, and α = 0.7 for both chaotic neurons.

Figure 6 shows the input–output characteristic of Fig. 5.
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Fig. 5: Schematic diagram of the EXOR circuit with two
chaotic neurons.
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Fig. 6: EXOR characteristic from the two-stage chaotic
neuron circuit in Fig. 5.

Here, when A1 ' A2 ' −1 (near the dotted line), the output
value is −1 (false). The output value is 1 (true) near the
solid line, that is, A1 ' 1 and A2 ' −1, and vice versa.
Moreover, the output value is −1 (false), near the dash-
dotted line with A1 ' A2 ' 1. Therefore, as shown in
Table 2, the circuit in Fig. 5 operates as a logical EXOR
function.

The intermediate characteristics in the transition regions
are not symmetric, however, as shown in Fig. 6. We there-
fore change the parameters to realize a symmetrical re-
sponse. First, we increase ε1 in the first neuron to 0.5 to
decrease the steepness of the response for the input val-
ues between 0 and 1. Second, we set v11 = v12 = −1,
θ1 = −2.6, k = 0.6, α1 = 0.6, v21 = v22 = 1, θ2 = 2.6,
α2 = 0.5, ε2 = 0.03, and v3 = 2.

Figure 7 shows the input–output characteristic of the cir-
cuit in Fig. 5 after the above changes; the circuit performs
the EXOR function for logical true and false inputs, and the
response is symmetric with respect to A1 + A2 = 0.

Table 2: Truth table of the EXOR characteristic in Fig. 6.

A1 A2 x(t)
−1 −1 −1
−1 1 1
1 −1 1
1 1 −1
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Fig. 7: EXOR characteristic after adjusting parameters.
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Fig. 8: Input–output characteristic of the first stage of the
chaotic neuron after ε1 is increased to 0.5.

Figure 8 shows the input–output characteristic of the first
chaotic neuron with ε1 = 0.5. As shown in the figure, the
first chaotic neuron does not indicate chaos; rather, the re-
sponse is smooth like a sigmoidal function. We can there-
fore efficiently construct an EXOR by replacing the first
neuron in Fig. 5 with a simple nonlinear function circuit,
as shown in Fig. 9.

4. Circuit Implementation and Experiments with Dis-
crete Elements

We constructed the EXOR logic circuit shown in Fig. 9
using a switched-capacitor (SC) circuit technique [7]. Fig-
ure 10 shows the SC chaotic neuron circuit. The supply
voltages are ±8 V. Equations (4) and (5) determine the
parameters k and α, respectively:

k = 1 − Ck

Ci
, (4)

α =
C f

Ci
. (5)

v1 = v2 = 1 is realized by setting Ca/Ci = 1. The threshold
θ is added to the input as shown in Fig. 9 in the experiments.
We realized the nonlinear function in Fig. 9 with the CMOS
inverter circuit shown in Fig. 11.

Figure 12 shows the input–output characteristic of the
circuit of Fig. 9 for α = 0.1, k = 0.76, θ1 = −5.5 V,
θ2 = 3 V, v21 = v22 = 0.45, and v3 = 0.3. In the figure,
a +4 V input voltage corresponds to logical true, and −4
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Fig. 9: Schematic diagram of the EXOR circuit with a non-
linear function circuit and a chaotic neuron.
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Fig. 10: SC chaotic neuron circuit.
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Fig. 11: CMOS inverter circuit; the resistor r is used to
adjust gain.

V corresponds to false. Moreover, +8 V and −8 V output
voltages correspond to true and false, respectively.

As shown in Fig. 12, when A1 ' A2 ' −4 V, the out-
put voltage around the dotted line is false (−8 V). Simi-
larly, around the dash-dotted line the output voltage is −8
V (false). When A1 ' 4 V and A2 ' −4 V, and vice versa,
the output is 8 V (true). Therefore, the circuit shown in Fig.
9 operates as a logical EXOR function, as summarized in
Table 3.

Fig. 12: Measured input–output characteristic of the EXOR
circuit in Fig. 9 (α = 0.1, k = 0.76, θ1 = −5.5 V, θ2 = 3
V, v21 = v22 = 0.45, and v3 = 0.3).

Table 3: Truth table of the characteristic in Fig. 12.

A1 [V] A2 [V] x(t) [V]
−4 −4 −8
−4 4 8
4 −4 8
4 4 −8

5. Conclusion

We proposed dynamic logic circuits using chaotic tran-
sition regions with chaotic neurons. The proposed circuits
operate as logic functions with input values near logic val-
ues. At intermediate input values the proposed circuits
show chaotic and periodic responses. Functioning of the
circuit can be dynamically altered. In the EXOR circuit
implementation, we simplified the circuit by employing a
simple inverter as the first stage of the two-chaotic neuron
structure. We have shown experimental results from the SC
circuit implementation for the EXOR circuit.

In future research, we will examine dynamic logic sys-
tems using the proposed device. We will furthermore use
the chaotic transition regions to construct a novel computa-
tional system.
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