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Abstract—The delayed feedback control is a one
of controlling chaos and can be achieved by providing
only the period of the unstable periodic orbit embed-
ded in a chaotic attractor. When we apply delayed
feedback control to switched dynamical systems with
jumping operations, we notice that a small mismatch
of the state and the memorized orbit info results a very
large amplitude impulse in control ability. In this pa-
per, we propose a method that is controlled impulse
and show effective of proposal method.

1. Introduction

The chaotic phenomena are observed in a lot of
fields. The chaos movements is a movement that
although is generated from deterministic system, it
shows an irregular and complex behavior and we can-
not predict the state in the future. The features of
chaos movement are sensitivity of initial conditions
and existence of infinitely many unstable periodic or-
bit(UPO). However, especially, the chaos movement
that shows these features is often avoided and required
to control this in the engineering field.

There is a controlling chaos in an effective tech-
nique for controlling the chaos movement. The con-
trolling chaos is a concept announced in 1990 [1]. This
method is stabilized chaos orbits to UPO by using
the fact that the chaos orbit is set of UPO that ex-
ists infinitely. Therefore, various methods have been
proposed and researched actively [2]. Delayed feed-
back control(DFC) is methods for one of the control-
ling chaos that Pyragas [3] proposed. This method is
controlled chaos in continuous dynamical systems and
it is stabilized the desired UPO by feeding back the
difference between the current state and the delayed
state of the desired UPO. The advantage of DFC are
that the analysis of the periodical trajectory that we
want to stabilize is unnecessary, essential parameter of
controlling is only period τ of the desired UPO and it
may be provided easily by using the hardware memory.
Therefore, we can confirm the computer simulation etc
whether the control show an enough performance.

In our study, to adopt the DFC to switched dynam-
ical systems with jump operation, we notice that a
small mismatch of the state and the memorized orbit
info results a very large amplitude impulse in control
ability. In this paper, we show application example for
adopting DFC by using Izhikevich model.

2. Delayed Feedback Control

DFC is method of controlling chaos in dynamical
systems and it stabilizes the desired UPO by feeding
back the difference between the current state and the
delayed state of the desired UPO. Figure 1 shows a
block diagram of DFC. We assume that the target dy-
namical system is expressed in the following equation:

dx

dt
= f(t, x), x ∈ Rn (1)

where, we assume the solution of Eq. (1) as x(t) =
ϕ(τ, x0). In general, the UPO that exists in the chaos
attractor is expressed in the following equation:

x0 = ϕ(0, x0) = ϕ(τ, x0), (2)

where τ denotes the period of this UPO. The conven-
tional DFC to Eq. (1) is expressed in the following
equation:

dx

dt
= f(t, x) + z(t)

z(t) = K(x(t− τ)− x(t))
(3)
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Figure 1: Block diagram of DFC
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where K is a constant n× n matrix. If z(t) converges
to 0 by adopting an appropriate K, Eq. (3) become
z(t) = 0 and become congruent with Eq. (1). In ad-
dition, the orbit of the control system at that time
become periodic orbit of τ -period. The advantage of
DFC are that the analysis of the periodical trajectory
that we want to stabilize is unnecessary, essential pa-
rameter of controlling is only period τ of the desired
UPO and it may be provided easily by using the hard-
ware memory. Therefore, we can confirm the computer
simulation etc whether the control show an enough
performance. The demerit of DFC is that the the-
oretic analysis on stability by the calculation of the
characteristic exponents is very difficult. Because the
control system totality become infinite dimension sys-
tems expressed in the differential difference equation.
As a result, we must pick K by trial and error. In
addition, if two or more UPO of period τ that ex-
ist in chaos attractor of controlled system exists, we
do not know to stabilize which UPO. To adopt DFC
to dynamical systems with jumping characteristic, the
following problem happens. The z(t) becomes like the
impulse of a large amplitude by delaying slightly the
timing of reset as shown in Fig. 2. We notice that this
z(t) negatively affects the control performance.

big

   impulse

Figure 2: controlled variable caused by delay of timing
of reset

3. Izhikevich

We use two model that Izhikevich model in this
paper. Izhikevich Model is the mathematical model
as the ignition phenomenon of the neuron and is ex-
pressed in the following equation:

v̇ = 0.04v2 + 5v + 140− u + I
u̇ = a(bv − u) (4)

The reset after spiking is expressed in the following
equation:

if v ≥ 30mV, then

{
v ← c

u← u + d
(5)

Where a, b, c, d and I are parameter and it is known to
be able to reproduce a variety of neuron ignition pat-
terns by selecting the parameter [4]. When we define

a, b, c, d and I as a = 0.2, b = 2, c = −56, d = −16
and I = −99, we can observe the chaos attractor. Fig-
ure 3 shows the chaos attractor in this model. Figure
3 shows the desired UPO of Izhikevich model in this
experiment.
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Figure 3: (a)chaos atrtractor:a = 0.2, b = 2, c =
−56, d = −16, I = −99 (b):1-period λ = −2.19, fixed
point (v0, u0) = (−56.0, −111.734371) (c):1-period
λ = 1.01, fixed point (v0, u0) = (−56.0, −154.450720)
(d):2-period λ = −5.04, fixed point (v0, u0) =
(−56.0, −108.062467), (−56.0, −115.721659)

4. Proposed method

In this section, we try stabilizing by impulse dele-
tion method as method of controlling controlled vari-
able. The impulse deletion method adjusts controlled
variable to zero toward reset as shown in Fig. 4. The
condition of reset is state of v in Izhikevich model that
we use in this study. Thus we configure threshold be-
fore it. If its value is more than condition of v(t) or
v(t − τ), we adjust controlled variable to zero. It is
expressed in the following equation:

ω(t) =
{

0 if x(t) ≥ L or x(t− τ) ≥ L
z(t) else

where L shows threshold and we define x(t) as v(t)
in this paper. In this experimentation, we define K =(

k1 0
0 k2

)
, k2 = 0. As a result, equation that we

apply controlled variable is expressed in the following
equation:

v̇ = 0.04v2 + 5v + 140− u + I + ω(t)
u̇ = a(bv − u) (6)
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Figure 4: Impulse deletion method

If UPO that we want to stabilize is more than one
period, we add the following condition. Whenever
UPO of the controlled system is reset, we divide τ
into τ1, τ2, · · · . We adopt arbitrarily divided period
τi and control only during adopted period. If UPO
that we want to control is 2-period in this time, we di-
vide τ into τ1 and τ2. We adopt arbitrarily period from
there, and we control during adopted period. Figure
6–7 show execution results of 1-period. This figure is
called basin boundary. It is a figure that we use dif-
ferent color by attractor converges initial value space.
Figure 8–9 show transition of controlled variable when
we compute parameter of each point in Fig. 6–7. Fig-
ure 8–9 show transition of controlled variable when we
control during both τ1 and τ2 and controlled only dur-
ing τ1 by using PDFC. It is thought it is stabilized to
UPO from controlled variable in Fig. 8–9 (a) stabi-
lize value that closes illimitably to 0. We notice that
the control performance is better only during τ1 when
we draw a comparison between Fig. 8 and Fig. 9.
However we could not stabilize when we control only
during τ2. As a result, we notice that we cannot sta-
bilize in some periods as controlled systems insofar as
PDFC. Hence, it is not always true that PDFC does
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Figure 5: Partial delayed feedback control
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Figure 6: basin boundary of λ = −2.19, L = 20.0
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Figure 7: basin boundary of λ = 1.01, L = 20.0
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Figure 8: transition of controlled variable of Fig. 6
(a):k = 0.12, (v0, u0) = (−56.0,−110.5) (b):k =
1.0, (v0, u0) = (−56.0,−114.0)

not always hold Izhikevich model.

5. Conclusion

In this paper, we showed problem when we adopt
DFC to switched dynamical systems with jumping
characteristics and proposed the Impulse deletion
method as personal cure of this problem. As a result,
we can stabilize UPO of 1-period and 2-period. This
shows that it is thought that the proposed method
works on dynamical systems with jumping character-
istics. In addition, we propose PDFC. This method is
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Figure 9: transition of controlled variable of Fig.
7 (a):k = 0.5, (v0, u0) = (−56.0,−50.0) (b):k =
1.0, (v0, u0) = (−56.0,−50.0) (c):k = 1.5, (v0, u0) =
(−56.0,−110.0)

divided period in which case UPO that we want to sta-
bilize is more than one period, and controlled during
adopted arbitrarily period. As a result, range that can
be stabilized runs or we could not stabilize by adopting
period. We must pick K by trial and error. However,
in case of PDFC, it is important that we adopt period
as controlled systems.
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Figure 10: DFC:transition of controlled variable
(a):k = 0.155, (v0, u0) = (−56.0,−108.062467)
(b):k = 0.155, (v0, u0) = (−56.0,−108.064467)
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