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Abstract—Some complex nonlinear phenomena have
reported on the coupled chaotic system included double
scroll family. It is considered that investigating bifurcation
structures of the system is extremely important to clarify
high-order complex nonlinear phenomena. In this study,
we investigate bifurcation structures on two coupled cu-
bic maps which belongs to double scroll family. By car-
rying out computation, bifurcation curves and basins are
obtained.

1. Introduction

Chaotic phenomena observed on large-scale coupled
chaotic systems have been attracted attentions in various
science fields since it can be regarded as models of real
physical system. For instance, chaos phenomena have been
reported in engineering, biology, economics, astronomy
and so on. Therefore investigation of chaotic system on
high-order chaotic systems are very important to grasp es-
sentials of the complex phenomena observed in natural sys-
tem. On the other hand, some chaotic system generate
multi-scroll attractor [1]. Complex nonlinear phenomena
have reported in chaotic system which belongs to multi-
scroll family. Moreover, the relationships between bifur-
cation structure and synchronization phenomena have re-
ported [2] [3]. Therefore investigating bifurcation struc-
tures of multi-scroll family is useful to clarify complex
nonlinear phenomena.

In this study, we investigate bifurcation structure and
basins in a coupled cubic maps which generates double
scroll attractor. By carrying out computation, complex bi-
furcation curves can be obtained. Be based on the bifur-
cation curves, we investigate the basins of multistability of
fixed point. This paper is organized as follows. In Section
2, we propose coupled cubic maps. In Section 3, bifurca-
tion curves on the system are investigated. Be based on
Section 3, multistability of fixed point are shown. Finally,

Section 4 concludes this work.

2. Coupled Cubic Map

In this study, we use a cubic map as the one-dimensional
subsystem in the coupled chaotic system. A cubic map
used in this study is described as:

x(n + 1) = ax(n)(1 − x(n)2). (1)

Figure 1 shows chaotic orbit which can be observed in the
system described with Eq. (1). The attractors are classi-
fied with colors. One-parameter bifurcation diagram and
the Lyapunov exponent of the cubic map is obtained as
shown in Fig. 2. By increasing the parameter a, pitchfork
bifurcation and flip bifurcation can be observed in the one-
dimensional map. The cubic map shown in Fig. 1 is cou-

Figure 1: Chaotic orbit observed in a cubic map.
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Figure 2: (1) One-parameter bifurcation diagram. (2) The Lyapunov exponent. Horizontal axis: a.

Figure 3: Parameter bifurcation diagram corresponds to the
pitchfork bifurcation. Blue, green and black lines show sta-
ble node, saddle and unstable node respectively. ε = 0.3.

pled with the scheme of GCM which is described as:

xi(n + 1) = (1 − ε) f [xi(n)] +
ε

N

2∑
j=1

f [x j(n)]

i = 1, 2

(2)

where ε ∈ [0 : 1] is the coupling intensity. Then, the map
T is described as:

T =



x1(n + 1) = (1 − ε
2

)ax1(n)(1 − x1(n)2)

+
ε

2
ax2(n)(1 − x2(n)2)

x2(n + 1) = (1 − ε
2

)ax2(n)(1 − x2(n)2)

+
ε

2
ax1(n)(1 − x1(n)2)

(3)

3. Bifurcation

In this section, bifurcations are investigated with respect
to parameter plane (a, ε). In the map T, pitchfork bifur-
cations of supercritical case and subcritical case are co-
existing as shown in Fig. 3. Blue, green and black lines
are corresponding to stable node, saddle and unstable node

respectively. Figure 4 (a) shows a representation of the
parameter plane and its enlargement. Each colored part
shows the existence of stable cycle. In the figure some
discontinuous boundaries of bifurcation are observed. The
phenomena are caused due to multistability behaviors and
Neı̈mark-Sacker bifurcation. Different attractors can coex-
ist, depending on the choice of different initial conditions in
a certain parameter region. Figure 4 (b) shows bifurcation
curves corresponding to pitchfork bifurcation curves and
flip bifurcation curves of order 2 and 4 cycles which can be
derived with the eigenvalue of Jacobian matrix. The bifur-
cation curves regarding order 2 and 4 cycles are obtained
analytically and given by:

Λ̄1
2(0) : a(ε) = 1

Λ̄2
2(0) : a(ε) = − 1

ε − 1

Λ̄3
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(4)
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Figure 4: Representation of the parameter plane (a, ε). Each colored part corresponds to the existence of a stable cycle
(periodic point), the order k (period) of which is given by the upper side colored squares. The black color corresponds to
k > 15 or to chaotic behavior. The white region corresponds to the nonexistence of attracting set, with chaotic transient
toward infinity. Horizontal axis: ε. Vertical axis: a. (a) Existence of stable periodic orbit. (b) Bifurcation curves of (1).
(2) Enlargement of (1).

where a pitchfork bifurcation curve is noted Λ̄ j
k, and a flip

bifurcation curve is noted Λ j
k. Note that the k is the order of

cycle and j differentiates cycles of same order Λ j
k denotes

flip bifurcation curves [5] [6]. From the representation and
bifurcation curves, we found that a lot of multistability re-
gion are coexisting. In the next section, the basin which
is an initial value set converging to a given orbit is investi-
gated for parameter values corresponding to multistability.

4. Basin

Figure 5 shows basin when T has multistability. Each
basin of attraction represented by different colors are cor-
responding to the stable periodic orbit. In Fig. 5 (1), two
stable period 1 orbits are coexisting. Blue dots and black
dots are corresponding to stable fixed point and unstable
fixed point respectively. In another parameter sets, 2 stable
period 2 orbits, a stable period 3 orbit, and another stable
period are coexisting as shown in Fig. 5 (2). Similar shape
of basin as shown in Fig. 5 (1) and complicated basin with
fractal structure can be observed in the parameter set. The
stable orbits observed in Fig. 5 (2) are shown in Fig. 6.
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Figure 5: Basin regarding to T . (1) a = 1.99, ε = 0.39. (2) a = 2.46, ε = 0.16.

5. Conclusion

In this study, we investigated a two-dimensional coupled
cubic map which belongs to double scroll family. In the
investigation of bifurcation curves, coexisting supercritical
and subcritial pitchfork bifurcation are confirmed. More-
over, bifurcation curves regarding to order 2 pitchfork bi-
furcation and flip bifurcation curves and the basins are ob-
tained on the parameter plane. In our future work, we will
investigate Neı̈mark-Sacker bifurcation curve and foliated
structure of the coupled cubic map.
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Figure 6: Coexisting stable period. The horizontal axis: x1.
The vertical axis: x2. (1) a = 1.99, ε = 0.39 (2) a = 2.46,
ε = 0.16.
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