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Abstract—Coupled chaotic map systems are attracted
as a good model for representation of several phenomena in
the real world. In the previous studies related with several
coupled network models, the value of the coupling strength
was almost a constant value and fixed. In this study, the
value of the coupling strength is varying in dependence on
state which is provided by a Gaussian function. Several
spatio-temporal phase patterns by their complex dynamics
could be confirmed. Two types of coupled network system
were considered, and pattern dynamics was investigated.

1. Introduction

Pattern dynamics and mechanism of organization in sev-
eral complex system attract many researchers’ attention as
a good model which can realize the complicated phenom-
ena in the real world. Coupled chaotic system and its dy-
namics can yield a wide variety of complex and strange
phenomena. The coupled systems existing in nature exhibit
great variety of phenomena such as complex mechanisms
for all of the systems in the natural fields or in the universe.
These phenomena can be found in a metabolic network, a
human society, the process of a life, self-organization of
neuron, a biological system, an ecological system and so
many nonlinear systems. Among the studies on such cou-
pled systems, many interesting researches relevant to the
spatio-temporal chaos phenomena on the coupled chaotic
systems have been studied until now, e.g. mathematical
model in one- or two-dimensional network investigated
earnestly by Kaneko[1]-[3], and found in physical circuit
model[4]. Moreover, research of complicated phenom-
ena and emergent property in the coupled cubic maps on
2-dimensional network system has been also reported[5].
The studies of coupled map lattice (CML), globally cou-
pled maps (GCM) and so many studies related with such
complex systems provided us tremendous interesting phe-
nomena. We had also reported the research on spatio-
temporal phase patterns in coupled maps using a fifth-
power function[6]-[8], in which it has been carried out
in the unique case. We had reported a research for com-
plex network by non-uniform coupling strength as one of
examples[9]. However many coupled chaotic systems have
wide variety of features and furthermore its dynamics is
also expected to be applied much engineering applications,
there are many problems which should be solved in large

scale coupled network systems by their complexity.
In this study, analysis of several spatio-temporal chaotic

behavior in coupled chaotic maps with varying coupling
strength by state of neighbors will be presented. The
chaotic map which has been governed by a third power
polynomial function is properly selected as a chaotic cell.
We consider the model which chaotic cells are mutually
connected to neighbors as a ring or 2-dimensional network
with an arbitrary coupling strength. In the almost previous
studies related with CML and GCM, the value of the cou-
pling strength was a unique value and fixed, and also using
the same coupling strength. In this study, contrary to the
previous them, we adopt a value of the coupling strength
which is provided in dependence on each state by a Gaus-
sian function as a non-uniform network. Several phase pat-
terns made from complex dynamics will be shown. Then,
we show some phenomena which spatio-temporal chaos,
complex behavior and several phase patterns can be con-
firmed in the proposed coupled systems.

2. Chaotic Maps

Chaotic maps are generally used for several approaches
to investigate complex dynamics and several phenomena
on coupled network systems. Especially, the logistic map
and other types of chaotic maps such as a cut map, a circle
map, a tent map, a cubic map are well known and popu-
lar. Obviously, it is necessary to have a lot of equilibrium
points with the complex phenomena that corresponds to the
natural world. Let us consider ann-th order polynomial
function. Then-th order polynomial function is normally
written as follows.

f (x) =

n∑

k=1

akxk (1)

whereak is the characteristic parameter which can deter-
mine for their chaotic feature. If it is needed to adopt the
map with respect to the origin, odd-numbered coefficients
ak are only set suitable values in (1). In other words, even-
numbered coefficients are set as all zero. Then, we can
easily confirm that it generates chaos in this function.

In this study, we consider a simple network using the
chaotic map as a subsystem. We use the cubic map as the
chaotic subcomponent in the following.
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Figure 1: Diagram of a cubic map fora = 2.6

x(t + 1) = a3x(t)3 + a1x(t) (2)

whereak is a parameter which can determine the strength of
nonlinear characteristic. We can easily confirm that chaos
generates in this subsystem.

In order to simplify, consider the parameters−a3 anda1

is the same valuea, then we hereafter use the cubic map in
the following.

x(t + 1) = ax(t)
(
1− x(t)2

)
(3)

It is well known that we can confirma crisis of chaos, if
the parametera is greater than around 2.6, which it is ob-
tained from Fig. 1. Hence the chaotic map can move both
positive and negative area when the parametera is larger
than a rigorous value 3

√
3/2(' 2.6). Further, ifa > 3,

i.e.
2a

3
√

3
>

√
1 + a

a
, we can also confirm that the system

diverges to infinity.
In order to evaluate the function (1), Lyapunov exponent

can be calculated by the following formula.

λ = lim
N→∞

N∑

k=1

log
∣∣∣∣∣
d f(x)

dx

∣∣∣∣∣ (4)

Lyapunov exponent is a very important measurement often
used to show the existence of chaos. Lyapunov exponents
with bifurcation diagram by changing one parametera for
Eq. (3) are shown in Fig. 2. These are typical results which
can be obtained from computer calculation. In case of poly-
nomial functions, period doubling and tangent bifurcation
can be confirmed. Therefore chaotic maps possessing sev-
eral equilibrium points can yield various wide interesting
behavior.

3. Several Phase Patterns in Coupled Chaotic Maps

In this section, we consider two types of coupled chaotic
network system as shown in Fig. 3, which each cell means
a chaotic map as a subsystem of the network. It can be con-
sidered easily that coupled chaotic systems have wide vari-
ety of phase patterns or spatio-temporal features. The term

- a

λ

x

Figure 2: Bifurcation diagram and Lyapunov exponent for
changinga

“spatio-temporal” is extensively used for irregular dynami-
cal behavior observed from large scale complex systems of
the relevant to both time and space.

In order to confirm spatio-temporal phenomena or phase
patterns, consider a coupled model of the chaotic maps
which are connected to neighbors. Each chaotic cell is con-
nected to neighbors by arbitrary coupling strengthε. The
whole system of CML is represented as

xk(t+1) = (1−ε) f
(
xk(t)

)

+
ε

2

(
f
(
xk−1(t)

)
+ f

(
xk+1(t)

))
,

(k = 1,2, · · · ,N)

(5)

where t is an iteration,k is an index number of the cell
which follows the cyclic rule, andN is a size of coupled
cells, respectively.

On the other hand, the 2-dimensional network system is
represented as

xi j (t+1) = (1−ε) f
(
xi j (t)

)
+
ε

4

∑

kl∈Ξ
f
(
xkl(t)

)
(6)

where{i, j} is an index number of cell, andΞ means four
neighbor cells.

In the previous studies related with CML network, the
coupling strength is used to be a constant and an unique
value. In this study, we propose the coupled chaotic sys-
tem model which the coupling strength will be used in the
following Gaussian function.
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Figure 3: Coupled chaotic network
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Figure 4: Nonlinear coupling strengthε(v) for γ = 1.0 and
σ = 0.4

ε(v) = γe−
v2

2σ2 (7)

whereε(v) is the coupling strength changing by their state
v, in which it moves monotonously between 0 andγ. The
diagram of Eq. (7) is shown in Fig. 4.

Then, the value of the coupling strengthε in Eqs. (5)–
(6) is replaced to the functionε(x) with γ = 1 andσ = 0.4.
Thus, every time the coupling strength is changed by their
state.

We show some numerical simulation results obtained
from two types of coupled systems. First, we consider that
the number of cellsN is as 100 in Eq. (5) of a CML type
network. Fig. 5 shows some simulation results of time-
waveform for some cases with varying coupling strength.
As we can see, a lot of interesting phenomena were con-
firmed though all the results cannot be represented more
here. In general, it almost tends to become random or dis-
order phase patterns because the coupling strength depends

on their state.
Similarly, we consider a 2-dimensional network sys-

tem which each cell is coupled to four neighbors. Fig-
ure 6 shows some simulation results obtained from 2-
dimensional system (6) at timet = 1000. This figure in-
dicates a grade of synchronous state for phase difference
with an average of four neighbors, which is illustrated with
gray scale monotone colors between whiteand black

correspond to synchronous and asynchronous state, re-
spectively. We can confirm that self-organizing formation
advances gradually as the parameter grows. Although we
cannot present all the simulation results, several phase pat-
terns and spatio-temporal phenomena from its complex dy-
namics will be observed in such coupled systems.

4. Conclusions

In this study, we considered the coupled network us-
ing a cubic map as a chaotic cell, and investigated their
dynamics. Some computer simulation results of spatio-
temporal chaotic behavior several phase patterns in the cou-
pled chaotic maps for ring and 2-dimensional network sys-
tems had been shown. Varying coupling strength provided
by a Gaussian function is very important to solve several
features in the real world. We consider that the coupled
chaotic system is also a good model as a stochastic model
such as natural patterns, self-organization, and so on. Fur-
thermore, we would like to use these pattern dynamics as a
stochastic model for several moving robots in near future.
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Figure 5: Some simulation results of time-waveform with
non-uniform coupling strengthε(v) forσ = 0.4. Horizontal
axis is a timet, and vertical axis corresponds to waveform
of each cellxk. (a)a = 2.60,γ = 0.6, (b)a = 2.58,γ = 1.0,
(c) a = 2.60,γ = 0.6, and (d)a = 2.88,γ = 0.6
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Figure 6: Snapshots of some simulation results of 2-
dimensional 50×50 network att = 1000. (a)a = 2.60,
γ = 0.60,σ = 0.20, (b)a = 2.59, γ = 1.0, σ = 0.40, (c)
a = 2.69,γ = 0.80,σ = 0.40, and (d)a = 2.88,γ = 0.60,
σ = 0.80
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