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Abstract— This study proposes a new Particle Swarm
Optimization (PSO) algorithm containing plural swarms
whose particles have different features. Each particle of
the proposed PSO belongs to one of plural swarms, which
have different characteristics, and the particle periodically
changes the swarm that it belongs to. We confirm the effec-
tiveness of the proposed PSO for both unimodal and multi-
modal functions with various dimensions.

1. Introduction

Particle Swarm Optimization (PSO) [1] is a popular opti-
mization technique for solving objective functions and PSO
is an evolutionary algorithm to simulate the movement of
flocks of birds toward foods. Due to its simple concept,
easy implementation and quick convergence, PSO has at-
tracted attentions and has been widely applied to different
fields in recent years. Furthermore, PSO has demonstrated
great performances for many problems. However, quick
convergence often leads to local optimum problem. It is
important for multimodal functions with a lot of local op-
tima to compromise between the quick convergence and
being trapped in a local optimum. In order to escape from
such local optima and to avoid the premature convergence,
the search for a global optimum should be diverse. Many
researchers have improved the performance of PSO by en-
hancing its ability with more diverse search [2]-[6]. In par-
ticular, some researchers have proposed the PSO method
using multiple swarms whose particles exchange their in-
formation among them [7][8].

On the other hand, in real world, a company performs
its business in an effective way. Each member of a com-
pany belongs to a department which has a determined role.
Some departments cooperate each other to achieve a com-
mon goal. Assignment to a department is decided by a
member’s ability and/or outcome.

In our past study, we have proposed a modified PSO
algorithm using plural swarms [9]. This algorithm con-
tained plural swarms whose features were the same, and the
swarms shared the information of the best position among
them. Furthermore, all the particles were repositioned peri-
odically. However, the effectiveness of using plural swarms
has not been clearly understood.

In this study, we propose an improved PSO algorithm
using plural swarms; PSO containing plural swarms whose
particles have different features (called PPSO). The pro-

posed algorithm reflects the concept of a company in the
real world. The proposed PPSO does not have the reposi-
tion process and each swarm has different features, unlike
our past algorithm. The important features of PPSO are
that each particle of PPSO belongs to one of plural swarms,
which have different characteristics, and are periodically
reconstituted. At every generation, each particle is ranked
by its cost among all the particles in all the swarms. Fur-
thermore, the particles periodically change the swarm that
it belongs to, according to its total ranking.

We explain the algorithm of PPSO in detail in Section 2.
In Section 3, we perform basic numerical experiments by
using four algorithm methods of PSOs including PPSO.
Furthermore, we confirm the efficiency of PPSO for high
dimensional functions.

2. PSO containing plural swarms whose particles have
different features (PPSO)

Each particle of PSO has two information; position and
velocity. The position vector of each particle i and its
velocity vector are represented by Xi = (xi1, xi2, . . . , xiD)
and Vi = (vi1, vi2, . . . , viD), respectively, where (d =

1, 2, . . . ,D), (i = 1, 2, ...,N) and xid ∈ [xmin, xmax].
The important features of PPSO are that each particle of

PPSO belongs to one of plural swarms, which have differ-
ent characteristics, and each particle periodically changes
the swarm that it belongs to. Each swarm is denoted as
S k (k = 1, 2, . . . ,K) and has N/K particles. The position
vector of each particle i and its velocity vector are updated
depending on its personal best position, the best position
among all the particles and the best position among the
particles belonging to the swarm. At every generation, each
particle is ranked by its cost f (Xi) among all the particles in
all the swarms. At every Tc generation, the particle changes
the swarm, that it belongs to, according to its total ranking
Ri.
[PPSO1] (Initialization) Let a generation step t = 0 and
tc = 0, i.e., tc is the time step for the reconstitution of
the swarms. Randomly initialize the particle position Xi

and its velocity Vi for all particles i and initialize Pi =

(pi1, pi2, ..., piD) with a copy of Xi. Evaluate the objective
function f (Xi) for each particle i, and find Pg with the best
function value among the all particles. Attach each particle
i to any swarm S k at random.
[PPSO2] Evaluate the current cost f (Xi). Update the per-
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sonal best position pbest Pi for each particle i and the
global best position gbest Pg among the all particles in all
the swarms so far.

[PPSO3] Let Psk = (psk1, psk2, · · · , psk D) represents the
swarm best position with the best cost among the particles
belonging to the swarm S k so far (called sbest). Update
Psk for each swarm S k, if needed.

sk = arg min
i
{ f (Xi)}, i ∈ S k. (1)

[PPSO4] Assign each particle i a rank r = 1, · · · ,N de-
pending on its cost f (Xi). The best rank of 1 indicates
the particle with the smallest function value, and the worst
rank of N indicates the particle with the largest function
value. ri denotes the sum of the rank of particle i so far;
rnew

i = rold
i + ri.

[PPSO5] Updated Vi and Xi of each particle i depending
on its pbest, its swarm best sbest and gbest;

vid(t + 1) =wkvid + c1r1 {pid − xid(t)}
+ c2r2

{
pskd − xid(t)

}
+ c3r3{pgd − xid(t)},

xid(t + 1) =xid(t) + vid(t + 1),

(2)

where r1, r2 and r3 are random variables distributed uni-
formly on [0, 1], and c1, c2 and c3 are positive acceleration
coefficients. wk is an inertia weight of the each swarm S k.
In other words, each swarms has different features depend-
ing on wk, and the particles belonging to different swarms
behave differently.
[PPSO6] If tc = Tc, perform [PPSO7]. If not, perform
[PPSO10]. Thus, perform [PPSO7] every Tc generation.
Tc is a fixed parameter and is the number of generations to
reconstitute the swarms.
[PPSO7] Rank each particle i as R = 1, · · · ,N according
to its ri. Ri denotes the total rank of the particle i. Ri = 1
is the best total rank and indicates the particle i with the
smallest ri.
[PPSO8] Reconstitute the respective swarms according to
the total rank Ri of each particle i. Each swarm k contains
N
K particles, and the best swarm S 1 consists of the particles
with high total rank Ri from 1 to N

K . In other words, the
each swarm S k includes the particles with the total rank Ri

from
(

(k−1)N
K + 1

)
to kN

K .
[PPSO9] Initialize the past total rank for all the particles,
namely reset Ri = 0 for all the particles, and reset tc = 0.

[PPSO10] Let t = t+1 and tc = tc+1. Go back to [PPSO2],
and repeat until t = T .

3. Numerical Experiments

In order to confirm the performance of PPSO algorithm,
we have performed basic numerical experiments. The
problem is finding the optimum (minimum) value of f (x) in
the algorithm. We use the following four bench marks [2].

1. Sphere function:

f1(x) =
D−1∑
d=1

x2
d, (3)

where x ∈ [−2.048, 2.047]D and the optimum solution x∗

are all [0, 0, . . . , 0].

2. Rosenbrock’s function:

f2(x) =
D−1∑
d=1

(100(x2
d − xd+1)2 + (1 − xd)2), (4)

where x ∈ [−2.048, 2.047]D and the optimum solution x∗

are all [1, 1, . . . , 1].

3. Rastrigin’s function and its optimum (minimum):

f3(x) =
D∑

d=1

(x2
d − 5 cos(2πxd) + 5), (5)

where x ∈ [−5.12, 5.12]D and the optimum solution x∗ are
all [0, 0, . . . , 0]. We consider that an almost optimum value
is obtained if the algorithm attains the criterion f1(x) =
100. This criterion is based on [2]. The range of initial-
ization is −5.12 ≤ xi ≤ 5.12.

4. Griewank’s function:

f4(x) =
D∑

d=1

x2
d

4000
+

D∏
d=1

cos(
xd√

d
) + 1, (6)

where x ∈ [−600, 600]D and the optimum solution x∗ are
all [0, 0, . . . , 0].

The optimum function values f (x∗) of all functions are 0.
f1 and f2 are unimodal functions, and f3 and f4 are multi-
modal functions with numerous local minima. All the func-
tions have D variables. In this study, D is set to 30 and 100
to investigate the performances in various dimensions.

In order to evaluate the efficiency of PPSO and to in-
vestigate behaviors of PPSO, we compare the four algo-
rithms;PSO1, PSO2, PPSO-R and PPSO. PSO1 is the stan-
dard PSO and PPSO is the proposed algorithm explained
in Section 2. In PSO2, the inertia weight w is not the fixed
value unlike the PSO1 and monotonically decreases with
the generations as

w(t) = wmax −
wmax − wmin

T
× t, (7)

where wmax and wmin are the maximum and minimum value
of w(t), respectively. In order to investigate the effect
of omitting [PPSO6] to [PPSO9] in Section. 2, we com-
pare PPSO with PPSO-R algorithm which does not have
the ranking evaluation and the reconstitute process of the
swarms. The inertia weight w of PPSO-R is the same
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Table 1: Comparison results PSO1, PSO2, PPSO-R and
PPSO on test functions with D = 30.

f PSO1 PSO2 PPSO-R PPSO

f1

Avg. 9.04e-61 2.19e-33 8.24e-25 1.13e-29
Min. 7.38e-66 1.16e-46 6.37e-39 8.56e-35
Max. 1.45e-59 4.42e-32 2.24e-23 6.19e-29

f2

Avg. 20.34 30.16 29.00 21.57
Min. 0.06 2.13 15.08 0.06
Max. 73.78 87.73 76.94 76.51

f3

Avg. 31.05 22.44 15.75 14.95
Min. 13.86 15.84 6.93 5.94
Max. 46.53 30.69 28.81 22.77

f4

Avg. 8.60e-03 1.14e-02 2.37e-03 1.31e-03
Min. 0 0 0 0
Max. 5.62e-02 6.87e-02 2.16e-02 1.48e-02

Table 2: Comparison Results PSO1, PSO2, PPSO-R and
PPSO on test functions with D = 100.

f PSO1 PSO2 PPSO-R PPSO

f1

Avg. 1.08e-06 2.20e-01 3.48 9.92e-10
Min. 2.18e-11 4.76e-04 2.08e-01 1.88e-15
Max. 3.00e-05 1.01 18.41 1.28e-08

f2

Avg. 17035.82 747.08 5478.69 179.83
Min. 98.53 367.54 514.89 77.57
Max. 503344.7 1958.46 14010.7 311.71

f3

Avg. 254.68 307.93 208.83 138.48
Min. 197.00 200.48 152.66 95.26
Max. 324.70 401.12 314.86 190.07

f4

Avg. 7.47e-03 5.29e-03 5.78e-02 2.71e-03
Min. 6.92e-12 1.15e-04 1.67e-02 6.66e-16
Max. 2.22e-02 2.76e-02 1.81e-01 2.22e-02

as PPSO, which has different value by each swarm; how-
ever, all the particles keep on the constitution of the initial
swarm.

The population size N is set to 60 in PSO1 and PSO2.
PPSO-R and PPSO have K = 6 swarms, and each swarm
contains 10 particles, i.e. N = 60. For PSO1, the in-
ertia weight is fixed as w = 0.6 which is a mean value
of all the inertia weights used in PPSO-R and PPSO. For
PSO2, w is decreased with time according to Eq. (7) where
wmax = 0.9 and wmin = 0.4. For PSO1 and PSO2, the
acceleration coefficients are set as c1 = c2 = 1.8. Because
PPSO-R and PPSO consist of the plural swarms whose fea-
tures are different, we use difference inertia weight on each
swarm. For PPSO-R and PPSO, the parameters are set as
c1 = 1.8, c2 = 1.4, c3 = 0.4,w1 = 0.9,w2 = 0.8,w3 =

0.7,w4 = 0.6,w5 = 0.5 and w6 = 0.4. The timing of recon-
struction is set as Tc = 100.

We carry out the simulation 30 times for all the optimiza-
tion functions with 3000 generations, namely T = 3000.
The performances with minimum, maximum and mean
function values on four functions with 30-dimension are
listed in Table 1. We can see that the mean values of PPSO

are the best in only f3 and f4 which are the two multimodal
functions. However, in case of the performances on the test
functions with D = 100 shown in Table 2, PPSO can obtain
the best mean values for all the test functions. In particular,
PPSO greatly improves the performance from PSO1 on f1,
f2 and f3 with D = 100. From these results, we can say that
PPSO is more effective for higher dimensional functions.

Figure 1 shows the mean gbest values of every genera-
tion over 30 runs for four test functions with 30 variables.
For the unimodal functions f1 and f2 as Figs. 1(a) and (b),
PSO1, which is the standard PSO, can obtain the best re-
sults. However, the performances of PSO1 for the multi-
modal functions f1 and f2 as Figs. 1(c) and (d) are bad val-
ues, instead, the proposed PPSO can obtain the best results.
Meanwhile, the mean gbest values for 100 dimensional test
functions are shown in Fig. 2. The performances of PPSO
are the best values in all the four test functions, and PSO1
cannot obtain good results for both the unimodal functions
and the multimodal functions. Because it is difficult for
PSO1 to find the optimum solution on the high-dimensional
functions, PSO1 are easily trapped in the local optima and
prematurely converge.

Let us consider PPSO-R and PPSO which have plu-
ral swarms and search with sharing the information of
the swarm best position sbest. The particles belonging to
the different swarms have the different inertia weight wk,
namely, their behaviors are different. The search range of
PPSO-R and PPSO are wider than PSO1 because there are
some kinds of particles in PPSO-R and PPSO and they are
updated depending on its pbest, sbest and gbest. However,
we can see that PPSO-R cannot find the optimum solu-
tion. Then, because PPSO-R does not have the reconsti-
tute process of swarms, the attracting force of PPSO-R to
the global best position gbest is weak even if the particles
belong to the swarm whose sbest is far from the optimum
solution. On the other hand, in PPSO, the particles moving
around the area, where is very far from the optimum solu-
tion, are attracted toward gbest by the reconstitute process
which is to redefine the role of respective particles. In other
words, the particles of PPSO can search the solution at the
wide region and in depth.

Meanwhile, PSO2 also uses the different inertia weight
in the simulation. However, the inertia weights of all
the particles simultaneously decrease with generation, and
PSO2 cannot achieve the good results.

From these results, we can say that PPSO is the effec-
tive algorithm, which has the plural kinds of particles and
whose swarm situation is periodically reconstituted, for the
complex problems such as the multimodal and the high-
dimension.

4. Conclusions

In this study, we have proposed a new Particle Swarm
Optimization algorithm (PPSO) containing the plural
swarms whose particles had different features. The im-
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Figure 1: Mean gbest value of every generation for 30-dimensional four functions. (a) Sphere function. (b) Rosenbrock’s
function. (c) Rastrigin’s function. (d) Griewank’s function.
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Figure 2: Mean gbest value of every generation for 100-dimensional four functions. (a) Sphere function. (b) Rosenbrock’s
function. (c) Rastrigin’s function. (d) Griewank’s function.

portant features of PPSO were that each particle of PPSO
belonged to one of plural swarms, which had different
characteristics, and periodically changed the swarm that it
belongs to. We have performed the basic numerical ex-
periments for various dimensions by using four algorithm
methods of PSOs including PPSO. We have confirmed that
PPSO could obtain the effective results especially for the
complex problems such as the multimodal function and
high-dimension.
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