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Abstract—A mechanical cantilever array having non-
linearity caused by magnetic forces has been produced for
experimental study on intrinsic localized modes (ILMs). It
was already reported that several ILMs were successfully
observed and manipulated. This paper discusses the basic
property of ILMs such as the coexistence and the stability.
In addition, frequency response of ILM is numerically in-
vestigated for both two- and eight-degree-freedom systems.

1. Introduction

Since A. J. Sievers and S. Takeno discovered intrinsic
localized mode (ILM) in an anharmonic lattice [1], the en-
ergy localized vibration has attracted many interests from
researchers. In this decade, experimental studies have ap-
peared [2], for example, in micro-cantilever arrays [3].
The experiments in micro-cantilever arrays [4] allow us to
expect to realize applications of ILM in micro- or nano-
engineering field.

For realization of such application, it is necessary to es-
tablish control scheme for ILM. Therefore, the dynamics
should be understood not only for standing one but also
for traveling one. We have numerically investigated ILMs
in a mathematical model describing vibrations of micro-
cantilever array. It was reported that coexisting ILMs show
the stability change [5] and traveling ILM can be manipu-
lated by the capture and release manipulation [6].

A macro-cantilever array, introduced in this paper, was
newly proposed to confirm the numerical results experi-
mentally [7], because constructions, adjustments, and mea-
surements in macro-scale are easier than that in micro-
/nano-scale. The cantilever array has an adjusting mecha-
nism of nonlinearity of each cantilever. This feature allows
to change the characteristics of the array dynamically. The
attractive manipulation by inducing an impurity is realized
by the individually adjustable nonlinearity [7].

In this paper, the macro-mechanical cantilever is briefly
introduced and modeled at first. Then experimental obser-
vations are reported. In Sec. 3, stability of coexisting ILM
is investigated. Finally, bifurcation diagrams are shown for
two- and eight-degree-of-freedom systems.

2. Cantilever array

The schematic configuration of the macro-mechanical
cantilever array is shown in Fig. 1(a). Eight elastic beams
are arranged in one dimension and with a constant pitch.
The upper end of each beam is fixed by the stiff support.
Then each beam behaves as a cantilever. The elastic rod,
called coupling rod, is attached near the support. Adjacent
cantilevers are coupled each other. At the free end of each
beam, the permanent magnet (PM) is attached. In addition,
the electromagnet (EM) is placed to face PM. The whole
of the cantilever array except EMs is vibrated by the voice
coil motor.

The pair of magnets induces a nonlinear restoring
force to each cantilever (see Fig. 1(b)). For simplicity,
Coulomb’s law for magnetic charges is applied to describe
the nonlinearity with respect to the displacement of the tip
of cantilever. By using small amplitude approximation, the
magnetically induced force
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is obtained [7], where mp and me correspond to magnetic
charges of PM and EM, respectively. d0 denotes the dis-
placement between PM and EM when the cantilever is at
rest. Since the magnitude of me(IEM) can be varied by the
current flowing in EM, the nonlinearity is an adjustable pa-
rameter in the array.

To describe the motion of the array, only the first mode
of cantilever is focused on for reducing the Euler-Bernoulli
beam equation to an ordinary differential equation. As a

Table 1: Parameter symbols and their estimated values in
Eq. (2), where χ(IEM) = χ0 + χ1IEM.

Symbol Value Symbol Value
ω0 2π×35.1 rad/s γ 1.5 s−1

C 284 s−2 χ0 −4.71 × 10−5 m3/s2

d0 3.0 mm χ1 −9.14 × 10−3 m3/s2A
A 3.0 m/s2 ω 2π×36.1 rad/s
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Figure 1: Configuration of (a) cantilever array and (b) mag-
netic charges.
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(b) n = 5

Figure 2: Experimentally observed ILMs.

result, the following equation is obtained [7],

ün = − ω2
0un − γu̇n + F(un) + A cos (ωt)

−C (un − un+1) −C (un − un−1) ,
(2)

where n = 1, 2, . . . , N for N-degree-of-freedom system.
The second term, −γu̇n is a damping term which is caused
by air friction, etc. The external force is assumed to be
sinusoidal function. C denotes the linear inter-site coeffi-
cient. In this paper, the boundaries of the array are set to
be fixed, namely, u0 = uN+1 = 0. The estimated values for
Eq. (2) are listed in Table 1.

3. Coexisting ILMs and its stability

3.1. Experimental excitation

Experimentally observed ILMs are shown in Fig. 2.
Only one cantilever shows a large amplitude oscillation
while the others are at almost rest. The energy of the array
is clearly localized. At the same condition as Fig. 2, several
ILMs were observed. In addition, the ground state that all
the cantilever oscillate in small amplitude is realized. Nu-
merical simulations confirm these observations [7]. Thus,

Eq. (2) is an appropriate model to study ILMs in the macro-
mechanical cantilever array.

3.2. Coexisting ILMs

The experimentally observed ILMs have only one site
which shows large amplitude oscillation. These ILMs are
classified into “Sievers-Takeno (ST) mode” [8]. On the
other hand, “Page (P) mode” [8] is known as another kind
of ILM that two neighboring sites excite [9]. P-modes
could not be observed at the parameter listed in Table 1.
It implies that P-modes are unstable. Numerical simulation
is thus applied to discuss the coexistence and the stability
of ILMs.

To obtain ILM solution, the anticontinuous limit is ap-
plied [10]. In the anticontinuous limit, an initial condition
is freely chosen at the no-coupling regime. A localized so-
lution is obviously obtained. After the coupling coefficient
is slightly changed, the calculation to obtain periodic so-
lution is applied again. If a similar localized solution to
the initial condition is obtained, the coupling coefficient is
changed. The above procedure is iterated until the coupling
coefficient reaches to the desired value.

Each cantilever has tree state when it excited at 36.1 Hz.
That is, stable resonance, unstable resonance, and stable
ground state. Therefore, these states can be chosen as an
initial condition for the anticontinuous limit. For localized
solutions, only one or two cantilevers are set at the stable or
the unstable resonance while the others are set at the stable
ground state. The upper suffix of ST5s implies that the 5th
cantilever is set at the stable resonance at the initial step
of the anticontinuous limit. P4u-5u is labeled In the same
manner, namely, the 4th and 5th cantilevers are set at the
unstable resonance.

Figure 3 show the wave form of coexisting ILMs ob-
tained by the anticontinuous limit. For ST-modes, only one
cantilever shows large amplitude oscillation. On the other
hand, two neighboring cantilevers oscillate in phase. The
difference between ST5s and ST5u(P4s-5s and P4u-5u) is
the phase of excited cantilever against the external force
A cosωt.

3.3. Stability

To identify the stability of ILM, Floquet multipliers are
obtained and shown in Fig. 4. ST5s is stable in the sense of
Lyapunov because all the multipliers are inside unit circle.
On the other hand, ST5u is unstable. One of the multipliers
is outside unit circle. The stability of ST-mode seems to
depend on the initial condition of the anticontinuous limit.

For P-mode, P4s-5s is unstable even though the initial
condition is stable. In general, the stability depends on
the spatial symmetry of ILM [8]. P-mode centered be-
tween sites usually unstable in discrete nonlinear Klein-
Gordon lattices that nonlinear oscillators are linearly cou-
pled. The macro-cantilever array is also a discrete nonlin-
ear Klein-Gordon lattice. Therefore, P-modes is unstable.
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(c) P4s-5s
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Figure 3: Numerically obtained ILMs by using the anticon-
tinuous limit. P4u-5s(P4s-5u) does not coexist for this case.
It can survive if the coupling coefficient C is sufficiently
small.

For P4u-5u, two Floquet multipliers are outside unit circle.
It seems to be contributed by two things which are the sym-
metry and the initial condition.

4. Frequency response

4.1. Two-degree-of-freedom system

The amplitude of coexisting ILMs depends on the fre-
quency of the external force. For simplicity, we start with
the case of two-degree-of-freedom system. Fig. 5 shows
the frequency response of the coexisting ILMs which has
the same frequency as the external force. Two peaks are
observed at f ≃ 35.5 Hz. The inset clearly shows that ST1s

and ST1u disappear via a bifurcation as the frequency de-
creases. It is very similar to the case of one oscillator in
which the stable resonance and the unstable resonance si-
multaneously disappear. For the P-modes, the situation is
the same.

ST1u(ST2u) and P1u-2u appear from ZBM at f ≃
37.25 Hz. This bifurcation is also similar to the case of
one oscillator. Therefore, at the parameter listed in Table 1,
the frequency response curve of individual oscillator is pre-
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Figure 4: Floquet multipliers for ILMs shown in Fig. 3.
The solid curve indicate unit circle on complex plane. All
the multipliers are found around +1.

served.

4.2. Response of localized modes

The frequency response curve for ILMs shown in Fig. 3
is shown in Fig. 6. Because of the number of cantilevers,
the frequency response curve become complicated. Then
the other ILMs are not shown. The shape of curves are
very similar to that in Fig. 5. It implies that the coupling
coefficient is weak and the boundary of the array does not
affect the response curve. However, ZBM in higher fre-
quency region is not connected to P1s-2s. The fact suggests
that many solution which is not localized concern the bifur-
cation between ZBM and ILMs in higher frequency region.
On the other hand, in the lower frequency region, the bifur-
cation between ZBM and ILMs is similar to that of Fig. 5.
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Figure 5: Frequency response curves of coexisting ILMs
for two-degree-of-freedom system. ZBM indicates the
ground state that all the cantilever oscillate with small am-
plitude. Insets shows enlargement near the bifurcation
points.
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Figure 6: Frequency response curves of coexisting ILMs
for eight-degree-of-freedom system. Only ST5s, ST5u,
P4s-5s, P4u-5u, and ZBM are shown.

5. Conclusion

In this paper, we briefly introduced the macro-
mechanical cantilever array which equips the mechanism
for tuning the nonlinearity of each cantilever. After the ob-
servation of ILM was shown, several kinds of ILM which
coexist in the array were numerically investigated. As a
result, the stability of ILM is affected by both the initial
condition of the anticontinuous limit and the spatial sym-
metry of ILM. The frequency responses were shown for
two- and eight-degree-of-freedom system. They show sim-
ilar structure to each other. This implies that the produced
cantilever array is under weak coupling regime. Therefore
the characteristics of individual cantilever clearly remain.
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