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Abstract—In this study, we investigate synchronization
phenomena when the 2-dimensional maps based on neuron
model are coupled with triangular network property. Fur-
thermore, the difference of synchronization obtained from
the coupled maps and the coupled oscillators is compared.

1. Introduction

Generally, complex dynamical phenomena can be ob-
served in networks formed by many elements with non-
linearity. Coupled Map Lattice (CML) has proposed by
Kaneko and Bunimovich [1]-[5], to use as general mod-
els for the complex high-dimensional dynamics, such as
biological systems, networks in DNA, economic activi-
ties, neural networks, and evolutions. We can observe the
spatio-temporal patterns in CML. Moreover, coupled oscil-
latory systems can also produce interesting phase patterns,
including wave propagation, clustering, and complex phase
patterns. It is very important to make clear this mecha-
nism of these spatio-temporal patterns for understanding
complex patterns observed in natural science. Usually,
the chaotic maps are used for CML and many interesting
spatio-temporal patterns were observed.

Recently, a discrete map for spiking-bursting neural be-
havior was proposed by Rulkov [6], [7]. Rulkov map (see.
Fig. 1) in the form of a two-dimensional map can be use-
ful for understanding the dynamical mechanism of oscilla-
tors in the large scale networks. And Rulkov map produce
spiking-bursting behavior such as real neurons.

In this study, we investigate synchronization phenomena
when the 2-dimensional maps based on neuron model are
coupled with triangular network property. Furthermore, the
difference of synchronization obtained from the coupled
maps and the coupled oscillators is compared.

2. Coupled Maps with Triangular Networks

The several types of coupled maps with triangular net-
works are shown in Fig. 2.

We consider a chain of coupled maps:

xi,n+1 = f (xi,nxi,n−1, yi,n)

+
1
2

g(xi+1,n − 2xi,n + xi−1,n),

yi,n+1 = yi,n − µ(xi,n + 1) + µσi
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Figure 1: Rulkov map. The dashed line illustrates a super-
stable cycle Pk. The stable and unstable fixed points of the
map are indicated by xps and xpu, respectively.
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Figure 2: Several types of coupled maps with triangular
network property.
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+µ
1
2

g(xi+1,n − 2xi,n + xi−1,n),

i = 1, ...,N, (1)

where x and y are the fast and slow dynamical variables,
respectively. µ = 10−3 and σi are the parameters of the
individual map and g is the coupling. The function f () has
the following form:

f (xn, yn) =



α/(1 − xn) + yn, xn ≤ 0,

α + yn, 0 < xn < α + yn

and xn−1 ≤ 0,

−1, xn ≥ α + yn or xn−1 > 0,

(2)

In this simulations, we take α = 3.5 and σi is set for
randomly distributed in the interval [0.15:0.16].

2.1. Synchronization for N = 3

First, we consider the simplest model as shown in
Fig. 2(a). The three maps are coupled as ring topology.
In this coupled maps model, three phase synchronization
can be observed when the copuling strength is set to g =
−0.029.
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Figure 3: Three-phase synchronization (g = −0.029).

2.2. Synchronization for N = 4

Next, the model of coupled maps with two triangular net-
works as shown in Fig. 2 (b) is considered. We observe two
types of synchronization states dependence on the value of
σ. When σ is fixed with 0.24, two pair of three phase syn-
chronization is obtained. The time wave forms of each map
are shown in Fig. 4. From this figure, the first, the second
and the third maps are synchronized with three-phase state.
Also, the first, the second and the fourth maps synchro-
nize at three-phase. Furthermore, we confirm that the third
and the fourth maps are synchronized with in-phase state.

While, in the case of σ = 0.10, in/anti phase synchroniza-
tion can be observed as shown in Fig. 5. The first and the
second maps are synchronized at the in-phase state and the
other combinations are synchronized at the anti-phase state.
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Figure 4: Two pair of three-phase synchronization (σ =
0.24).
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Figure 5: In/Anti-phase synchronization (σ = 0.10).

3. Comparison with Coupled Oscillatory System

In this section, we compare synchronization phenomena
between the coupled maps and the coupled oscillators.
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3.1. Circuit Model for N = 3

The circuit model of three coupled van der Pol oscillator
as ring topology is shown in Fig. 6. This circuit model
corresponds to the three coupled maps shown in Fig. 2 (a).
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Figure 6: Circuit model (N = 3).

We assume that the vk − iRk characteristics of the nonlin-
ear resistor in each oscillator is given by the following third
order polynomial equation,

iRk = −g1vk + g3vk
3 (g1, g3 > 0), (3)

(k = 1, 2, 3, 4).

The normalized circuit equations governing the circuit
are expressed as
[First oscillator]

dx1

dτ
= ε
(
1 − 1

3
x1

2
)
x1 − (ya1 + yb1)

dya1

dτ
=

1
2

{
x1 − ηya1 − βγ(ya1 + yb2)

}
dyb1

dτ
=

1
2

{
x1 − ηyb1 − γ(ya3 + yb1)

} (4)

[Second oscillator]

dx2

dτ
= ε
(
1 − 1

3
x2

2
)
x2 − (ya2 + yb2)

dya2

dτ
=

1
2

{
x2 − ηya2 − γ(ya2 + yb3)

}
dyb2

dτ
=

1
2

{
x2 − ηyb2 − βγ(ya1 + yb2)

} (5)

[Third oscillator]

dx3

dτ
= ε
(
1 − 1

3
x3

2
)
x3 − (ya3 + yb3)

dya3

dτ
=

1
2

{
x3 − ηya3 − γ(ya3 + yb1)

}
dyb3

dτ
=

1
2

{
x3 − ηyb3 − γ(ya2 + yb3)

} (6)

where

t =
√

LCτ, vk =

√
g1

3g3
xk,

iak =

√
g1

3g3

√
C
L

yak, ibk =

√
g1

3g3

√
C
L

ybk,

ε = g1

√
L
C
, γ = R

√
C
L
, η = rm

√
C
L
,

(k = 1, 2, 3).

In this equations, γ is the coupling strength and ε de-
notes the nonlinearity of the oscillators. For the computer
simulations, γ and ε are fixed with 0.1, 0.1, respectively.
For the computer simulations, we calculates Eqs. (4)-(6)
using a fourth-order Runge-Kutta method with the step size
h = 0.005. Figure 7 shows the three time wave forms ob-
tained by each oscillator. We can see that the three oscilla-
tors are synchronized at the three-phase state.
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Figure 7: Three phase synchronization obtained from cou-
pled oscillatory system.

3.2. Circuit Model for N = 4

Here, we consider the two coupled triangle oscillatory
networks sharing a branch. The circuit model of two cou-
pled triangle oscillatory networks sharing the branch is
shown in Fig. 8.
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Figure 8: Circuit model (N = 4).

The parameters of this circuit model are fixed as ε = 0.1,
γ = 0.1, η = 0.0001.
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Figure 9 shows the time wave form of the voltage
charged at the capacitance of each oscillator. From this
figure, we can see that the first and the second oscilla-
tors are synchronized at in-phase (phase difference: 0 de-
gree). While, the other combination oscillators synchro-
nize with anti-phase (phase difference: 180 degree). Fur-
thermore, the amplitude of between the first/second and
the third/fourth oscillators has small difference. The phase
plane of each combination oscillator is shown in Fig. 10.
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Figure 9: Time wave form of the voltage charged at the
capacitance of each oscillator.
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Figure 10: Phase plane of each oscillator.

4. Discussions

In this section, we compare the synchronization phe-
nomena between the coupled maps system and the coupled
oscillators system. In the case of that the number of cou-
pled elements is N = 3, the three-phase synchronization
can be observed from the both systems. When the num-
ber of coupled elements is fixed as N = 4, we observe
the in/anti-phase synchronization from the both systems.
Furthremore, the two pair of three-phase synchronization
can be observed from the coupled maps system.

5. Conclusions

In this study, we have investigated synchronization phe-
nomena when the 2-dimensional maps based on neuron
model are coupled with triangular network property. Fur-
thermore, the difference of synchronization obtained from
the coupled maps and the coupled oscillators was com-
pared.
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