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Abstract—In this paper the hyperjerk dynamics
and the corresponding jerk functions for well known
hyperchaotic circuits are presented. In particular, it
is shown that the hyperjerk dynamics can not be ob-
tained for each circuit variables, moreover it can not
be obtained for all the variables of particular circuits.

1. Introduction

Chaos and hyperchaos are widely studied in the lit-
erature. Recently, particular attention has been de-
voted to the study on a particular class of such a type
of circuits: the hyperjerk dynamical systems [1]. Our
attention is focused in this paper to the hyperjerk with
hyperchaotic dynamics. In fact, even if hyperjerk sys-
tems showing hyperchaotic dynamics have been stud-
ied [2], the derivation of hyperjerk form for the classical
hyperchaotic systems has not been investigated.

The hyperjerk dynamical systems are emerging as
the simplest class of dynamical systems with hyper-
chaotic behavior. In this paper, we review the hyper-
jerk form of hyperchaotic dynamics of some classical
hyperchaotic circuits showing that for some of them,
even if the hyperjerk form can be achieved it is possible
to do it only with respect to some variables, while for
other circuits the hyperjerk form does not exist with
respect to any state variable.

In particular, the Rossler system [3], the Lorenz sys-
tem [4], the Lii system [5], and the Chen circuit [6] have
been analyzed and the derivation of the corresponding
possible hyperjerk forms considered. It will shown that
hyperjerk dynamics can be obtained in the first three
cases, while for the hyperchaotic Chen circuit can not
be derived. In fact even if starting from a differential
equation of degree n, a system with n state variables
can always be derived, in general the viceversa is not
true.

Furthermore, a fundamental aspect in chaotic and
hyperchaotic systems is also addressed, i.e. the syn-
chronization of a pair of hyperjerk systems [7, 8, 9].
Aim of this paper is also to propose a strategy for syn-
chronization which exploits the particular structure of
an hyperjerk system.

The paper is organized as follows: in Sec. 2 the hy-
perjerk form od some hyperchaotic dynamical system
are roported. In Sec. 3 the synchronization of hy-
perjerk has been studied. Moreover in the conclusive
remarks some results on deriving hyperjerk forms will

be emphasized in order to propose a general synchro-
nization approach.

2. Hyperjerk form for hyperchaotic circuits

In this section the main hyperchaotic systems re-
ported in the literature will be studied. In particular,
it has been studied the possibility of deriving the hy-
perjerk form for four canonical hyperchaotic circuits.
In principle, considering fourth-order dynamical sys-
tems, four different hyperjerk forms can be obtained
from each system, consisting in the following fourth-
order differential equation:

¥ = (6., ) )
where X is the generic state variable and f is a nonlin-
ear function of the other derivatives of the same state
variable.

2.1. Rossler hyperchaotic system

The hyperchaotic extension of the well-known
Rossler oscillator is described by the following dynam-
ical equations:

T=—-y—2z

y=z+ay+w

t=b+uxz (2)
W= —cz+dw

where a = 0.25, b = 3, ¢ = 0.5, and d = 0.05 are
parameter values for which an hyperchaotic behavior
can be observed. We first try to derive an hyper-
jerk form of the type (1) for state variable z. Let
us start from the first equation of (2), from which
we can derive z = —y — &. The strategy is to op-
erate successive differentiation with respect to time
of the first equation of (2) and derive the other two
state variable as a function of = and its derivatives.
Hence, differentiating the first equation once we ob-
tain & = -y —2=—-x—ay —w— b+ xy + x& from
which we derive w = —% — x — ay — b+ xy + zz, dif-
ferentiating the same equation twice we derive y =
ac+(1+(a+d)m—202+a;7)a(caig;;’(iamd)f:-(b d)z—ab db. Finally,
the hyperjerk form can be achieved with a further dif-
ferentiation obtaining
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= (r+ay+w)(z?+i— (a+d)x+ad—c)

+y(# 4 223 — (a + d)#) + 22¢ — (a + d)d + b — d)i

~(14+c+(a+dx—22)i—ii+(a+d—2)%
(3)
in which y, z, and w can be substituted with the ex-
pressions derived above.
Following the same procedure, the hyperjerk forms
with respect to all the other three state variables can
be found.

2.2. Lorenz hyperchaotic system

The hyperchaotic formulation of the Lorenz system
is governed by the following set of equations:

t=aly—z)+w
Yy=rr—y—xz
Z=uxy—bz

w = dw — Pxz

where @ = 10, r = 28, b = 8/3, d = 1.7, f = 1 are
parameter values for which hyperchaos arises.

From the first equation of (4 we derive w = & —ay+
ax. Differentiating the first equation and substituting
w, and y and w as in Eqs. (4) we have & = (ar+da)x—
a(l+d)y — (a+ fB)xz+ (d — a)i, from which y can be
derived. Differentiating two times the first equation
of (4 and substituting w, y and ¢, w and Z we obtain
T = (d—a—1)i+(ar+da+d—a)t+(da—adr)z—(B—
ad—b(a+p))rz— (a+ B)iz — HLa?(—i+ (d—a)i +
(ar +da)z) + %x?’z. The third state variable can
be easily derived as z = [+ (d—a—1)Z + (ar + da +
d—a)t+ (da — adr)x — %aﬁde(—j} +(d—a)i+ (ar+
da)z)]/[(8 — ad — bla + B))z + (a + B)d — ©HI 43
Hence, the hyperjerk form of the Lorenz hyperchaotic
system can be written as

(4)

P =(d-a—-1)7+ (ar +da+d—a)i+
+(da — adr)z — (8 — ad — b(a + B))-
(22 + w(zy — b2)] = (a + B) (&2 + d(xy — bz))—
—;:fd [2z3(—Z + (ar + da)z + (d — a)i)+
+2%(=% + (ar + da)i + (d — a))]+

+%[3m23’:z + 23(zy — b2)]

(5)

The same procedure leads to the hyperjerk form for

the Lorenz system with respect to y. However, it is not

possible to derive the hyperjerk form with respect to

z and w. This is due to the fact that neither from the

third equation nor from the fourth, a linear expression
for the other state variables can not be derived.

2.3. Lii hyperchaotic system

The Lii system is governed by the following dynam-
ical equations:

t=aly—z)+w
Yy=-—zrz+cy
z=uxy— bz
w=xz+ dw

where a = 36, b = 3, ¢ = 20, and d = 1.3 are the
parameter values corresponding to an hyperchaotic at-
tractor. The procedure to derive the hyperjerk forms
is the same as described before and can be applied
to the derivation of the two hyperjerk forms with re-
spect to = and y. The first hyperjerk form is here
reported starting from the first equation, from which
we derive w = & — ay + az. Differentiating once we

have & = (—az + ac — ad)y — (a — d)& + dx + zz from

i+(a—d)z—dz—zz
ac—ad—ax :

2

(6)

which y = Differentiating twice we
get T = y(—ai + ar? — acx — (ac — ad)i + ac® — acd +
22) — (a — d)i + di — bxz + xZ from which z can be
derived, and the hyperjerk form can be found with a

further derivation of the first of Eqs. (6).

2.4. Chen hyperchaotic system

Finally, let us consider the case of the hyperchaotic
Chen system, which represent a slight modification of
the Lorenz system. In particular, the three nonlin-
earities of the system are three different cross-product
between state variable:

t=aly—z)+w

y=dr—xz+cy

z=uxy—bz

w=yz+rw
where a = 35, b =3, c =12, d = 7, and r = 0.1.
The presence of three different nonlinearities prevent
the possibility of reaching any hyperjerk.

(7)

3. Hyperjerk synchronization remarks

Even if classical schemes of synchronization can be
used for hyperjerk systems, the study of observed-
based synchronization here will be investigated. More-
over, in order to evaluate a simple scheme the possibil-
ity of synchronizing two of them by stabilizing the lin-
ear part of the hyperjerk form will be studied. For the
hyperjerk systems introduced in the previous section
a linear observer can not achieve the synchronization
while for the hyperjerk system it is possible.

Let us consider, a general hyperjerk form with re-
spect to a given state variable and rewrite it as a set
of four first-order nonlinear differential equations:

i‘lsz‘Q
j?gzl‘g
T3 = T4

&4 = apr1 + a1x2 + asx3 + asxa + g(21, T2, T3, T4)

(8)
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where g is a nonlinear function. The state matrix A
of the linear part of system in Eqgs. (11) can be easily
derived as:

A strategy based on the definition of an observer for
the linear part can be easily implemented acting on
the eigenvalues of matrix A. Stabilizing matrix A, the
observer can be written as:

T1 = T2 + ki€
To = 23 + koe
1%3 :i'4+]€36

Ty = a1 + a1&2 + aslz + azla + g(T1, T2, T3, Ta) + kae

(9)
where k1, ko, k3, and k4 are observer gains and e =
T, + X9+ T3+ x4 — L1 — Lo — T3 — X4 is the fed-back
erTor.

However the onset of a synchronous behavior can be
achieved only in particular cases. If we consider the
hyperjerk form reported for the Lorenz hyperchaotic
system, in fact, the state matrix of the linear part can
be written as:

0 1 0 0
0 0 1 0
A= 0 0 0 1
0 459 -—288.7 9.3

but stabilizing it with a gain vector k =
[ —0.1344 46.8852 —26.9273 —0.5236 ] the ob-
server does not converge to a stable synchronous solu-
tion.

It is worth noticing that considering an hyperchaotic
system originally written in hyperjerk form, namely
the hyperchaotic snap system [1], the strategy based
on the observer reveals its effectiveness. In fact, given
the following hyperjerk form:

Bttt dai i +a=0 (10)

where a = 3.6 is the single bifurcation parameter, can
be rewritten as follows:

i1 = X2
j)g = X3
s — 1 (11)
T4y = —T1 — To — aAx3 — x‘ll:c4
The state matrix of the linear part can
be stabilized using a gain vector k =
[ 5.0000 5.4545 2.7879 —3.2424 ] and a sta-

ble synchronous behavior can be observed as shown
in Figs. 1 and 2.
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-2 -1 0 1 2
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(b)

Figure 1: Synchronization of two snap hyperchaotic
systems using the observer-based approach: (a) hy-
perchaotic attractor and (b) synchronization plot.
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Figure 2: Synchronization of two snap hyperchaotic
systems using the observer-based approach: temporal
evolution of the four state variables.
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4. Conclusion

In this paper hyperjerk forms of classical hyper-
chaotic systems are introduced. Moreover a study on
the synchronization of hyperjerk forms has been pro-
posed showing that exploiting the particular charac-
teristic of the jerk form allows to define a strategy
based on linear observer. It is shown that numerical
evidences allow to postulate that this strategy, based
on the stabilization of the linear part of the jerk form,
is suitable only for hyperchaotic systems originally ex-
pressed in hyperjerk form.
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