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Abstract—A two-phase decomposition algorithm for
convex quadratic programming problems is proposed. Ex-
perimental results show that the proposed algorithm can
greatly reduce the computation time of the conventional
decomposition algorithm when the number of variables is
large and the number of equality constraints is small.

1. Introduction

A quadratic programming (QP) problem is an optimiza-
tion problem in which the objective function is quadratic
and the constraints are linear equalities and inequalities.
QP has numerous applications such as portfolio selection,
data mining, pattern recognition, structural optimization,
VLSI placement and so on. Various approaches have been
proposed for solving QP problems such as the active-set,
the conjugate gradient and the interior-point methods [1].

Recently, the authors have proposed a decomposition al-
gorithm1 for solving QP problems and shown experimen-
tally that it is very effective when the number of variables
is large and the number of constraints is small [4]. How-
ever, experimental results also showed that the first part of
the algorithm takes more than half of the total computation
time. The first part is just to find a feasible solution. This
is done by solving an linear programming (LP) problem,
which has the same constraints as the original QP problem,
by using an existing LP solver such as the simplex method.
The second part, on the other hand, is to optimize the so-
lution by using a decomposition method, that is, the fol-
lowing two operations are executed repeatedly until some
termination criterion is satisfied: 1) selecting a small num-
ber of variables and 2) solving a QP problem with respect
to the selected variables.

In this paper, we propose a two-phase decomposition al-
gorithm. The main idea is to apply the decomposition tech-
nique not only to the optimization process but also to the
selection of a feasible solution. Experimental results show
that the computation time is greatly reduced in almost all
cases by using the proposed algorithm.

1Decomposition algorithm was first proposed by Osuna et.al [2] to
solve large scale QP problems arising in support vector machines[3].

2. Quadratic Programming Problem

We consider QP problems of the form:

Minimize f (x) = 1
2 xT Qx + cT x

Subject to Ax = b
x ≥ 0

(1)

where x ∈ Rn is a variable; Q ∈ Rn×n, c ∈ Rn, A ∈ Rm×n

and b ∈ Rm are constants. The inequality x ≥ 0 means that
all components of x is nonnegative. Note that (1) includes
the LP problem as a special case.

If f (x) is convex, or, Q is positive semi-definite, a QP
problem is called a convex QP problem. The set of optimal
solutions of a convex QP problem is completely charac-
terized by the Karush-Kuhn-Tucker (KKT) conditions [1].
In case of (1), a feasible solution x is an optimal solu-
tion if and only if there exist λ = [λ1, λ2, . . . , λm]T and
µ = [µ1, µ2, . . . , µn]T such that the KKT conditions:

Qx + c + ATλ − µ = 0 (2)
µ ≥ 0 (3)

µixi = 0, i = 1, 2, . . . , n (4)

are satisfied. If xi > 0 then µi must be zero from (4). In
this case, the i-th component of (3) is necessarily satisfied,
and the i-th component of (2) is written as [Qx]i + ci +

[ATλ]i = 0, where [Qx]i ([ATλ]i, resp.) represents the i-th
component of the vector Qx (ATλ, resp.). If xi = 0 then
(4) apparently holds, and the conditions (2) and (3) for the
i-th component are rewritten as [Qx]i + ci + [ATλ]i ≥ 0.
Therefore the KKT conditions (2)–(4) can be rewritten as

[Qx]i + ci + [ATλ]i{
= 0, if xi > 0
≥ 0, if xi = 0 , i = 1, 2, . . . , n. (5)

3. Previous Work

The authors have recently proposed a decomposition al-
gorithm for solving (1) [4]. In the first part of their algo-
rithm, the LP problem

Minimize 0
Subject to Ax = b

x ≥ 0
(6)
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is solved by using one of existing LP solvers such as the
simplex method, in order to find a feasible solution of (1).
In the second part, a decomposition method is applied to
find an optimal solution of (1), that is, two operations are
executed repeatedly until some termination criterion is sat-
isfied: one is to select a set of q variables; the other is to
minimize f (x) by updating only the selected variables. An
optimal solution of (6), which is obtained in the first part,
is used in the second part as the initial value of x.

Experimental results showed that the decomposition al-
gorithm proposed in [4] is faster than the direct application
of QP solvers to (1) when the number of variables is large
and the number of equality constraints, is small. However,
at the same time, it was shown that the computation time
for the first part is longer than the second part.

4. Proposed Algorithm

In the following, we will assume that

b ≥ 0 . (7)

This assumption does not lose generality because any QP
problem of the form (1) can be transformed into another QP
problem which is equivalent to the original one and satisfies
(7) by multiplying the i-th row of Ax = b by −1 for all i
such that bi < 0.

4.1. Introduction of Artificial Variables

In order to reduce the computation time for the first part
of the decomposition algorithm proposed in [4], we apply
decomposition technique not only to the second part but
also to the first part. However, this is not straightforward
because (6) does not have a trivial feasible solution. Hence
we make use of the idea of two-phase method for LP prob-
lems, that is, we introduce artificial variables u1, u2, . . . , um

and transform (6) into the following form:

Minimize
∑m

i=1 ui

Subject to Ax + u = b
x ≥ 0
u ≥ 0

(8)

where u = [u1, u2, . . . , um]T ∈ Rm. An important property
of this LP problem is that it has a trivial feasible solution
(x,u) = (0, b). So we can easily apply the decomposition
method to (8) with the initial solution (x,u) = (0, b). An-
other important property is that (8) has the optimal solution
with u = 0 if and only if (6) has a feasible solution. Hence,
by solving (8), we can determine the feasibility of (6).

Let x̃ = [xT ,uT ]T ∈ Rn+m, Ã = [A, I] ∈ Rm×(n+m) and
d = [0T , 1T ]T ∈ Rn+m where I is the m dimensional identity
matrix, 0 is the n dimensional zero vector and 1 is the m
dimensional vector with all components equal to one. Then
(8) is rewritten as follows:

Minimize dT x̃
Subject to Ãx̃ = b

x̃ ≥ 0
(9)

The KKT condition for this LP problem can immediately
be derived from (5) as follows:

di + [ÃT λ̃]i{
= 0, if x̃i > 0
≥ 0, if x̃i = 0 , i = 1, 2, . . . , n + m. (10)

where λ̃ ∈ Rm.

4.2. Decomposition Algorithm

A two-phase decomposition algorithm we propose in
this paper is as follows:

1. Set x̃(0) := [0T , bT ]T where 0 is the n dimensional zero
vector.

2. Solve the LP problem:

Minimize δ̃

Subject to
∣∣∣di + [ÃT λ̃]i

∣∣∣ ≤ δ̃, ∀i ∈ Ĩ(k)
+

di + [ÃT λ̃]i ≥ −δ̃, ∀i ∈ Ĩ(k)
0

(11)

where Ĩ(k)
+ = {i | x̃(k)

i > 0} and Ĩ(k)
0 = {i | x̃

(k)
i = 0}. If the

optimal value of δ̃ is less than ε1(> 0) then go to Step
6. Otherwise go to Step 3.

3. For i = 1, 2, . . . , n + m, set

ṽ(k)
i :=

{ ∣∣∣di + [ÃT λ̃∗]i

∣∣∣ , if i ∈ Ĩ(k)
+

−min(0, di + [ÃT λ̃∗]i), if i ∈ Ĩ(k)
0

(12)

where (λ̃∗, δ̃∗) is the optimal solution of (11) obtained
in Step 2. Sort these values in decreasing order as

ṽ(k)
i1
≥ ṽ(k)

i2
≥ · · · ≥ ṽ(k)

in+m
.

Set Ĩ(k)
B := {is}q̃s=1 and Ĩ(k)

N := {is}n+m
s=q̃+1.

4. Solve (9) under the additional constraints

x̃i = x̃(k)
i , ∀i ∈ Ĩ(k)

N ,

and set x̃(k+1) to the obtained optimal solution.

5. Add 1 to k and go to Step 2.

6. If x̃(k)
i ≥ ε2 (> 0) holds for some i ∈ {n+1, n+2, . . . , n+

m} then stop. Otherwise go to Step 7.

7. Set x(k) := [x̃(k)
1 , x̃

(k)
2 , . . . , x̃

(k)
n ]T .

8. Set g(k) := Qx(k) + c and solve the LP problem:

Minimize δ

Subject to
∣∣∣g(k)

i + [ATλ]i

∣∣∣ ≤ δ, ∀i ∈ I(k)
+

g(k)
i + [ATλ]i ≥ −δ, ∀i ∈ I(k)

0

(13)

where I(k)
+ = {i | x(k)

i > 0} and I(k)
0 = {i | x(k)

i = 0}. If
the optimal value of δ is less than ε3(> 0), then stop.
Otherwise go to Step 10.
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9. For i = 1, 2, . . . , n, set

v(k)
i :=

{ ∣∣∣g(k)
i + [ATλ∗]i

∣∣∣ , if i ∈ I(k)
+

−min(0, g(k)
i + [ATλ∗]i), if i ∈ I(k)

0
(14)

where (λ∗, δ∗) is the optimal solution of (13) obtained
in Step 9. Sort these values in decreasing order as

v(k)
i1
≥ v(k)

i2
≥ · · · ≥ v(k)

in
.

Set I(k)
B := {is}qs=1 and I(k)

N := {is}ns=q+1.

10. Solve (1) under the additional constraints

xi = x(k)
i , ∀i ∈ I(k)

N ,

and set x(k+1) to the obtained optimal solution.

11. Add 1 to k and go to Step 8.

In the first phase (Steps 1 to 5), the LP problem (9) is
solved by using a decomposition method. In Step 1, the
initial solution x̃(0) is set to a feasible solution [0T , bT ]T . In
Step 2, the LP problem (11), which has m+ 1 variables and
at most 2(n + m) inequality constrains, is solved to check
whether the KKT condition (10) is satisfied or not for x̃(k).
In Step 3, q̃ variables are selected for the working set based
on the degree of violation of the KKT condition defined
by (12). In Step 4, the values of the selected variables are
updated by solving the LP subproblem. Let us assume for
simplicity that Ĩ(k)

B = {1, 2, . . . , q̃}. Then the LP subproblem
is expressed as

Minimize dT
B x̃B

Subject to ÃB x̃B = b − ÃN x̃(k)
N

x̃B ≥ 0
(15)

where x̃B, x̃(k)
B and dB are the vectors composed of the first

q̃ components of x̃, x̃(k) and d, respectively; ÃB and ÃN are
the first q̃ columns and the last n + m − q̃ columns of Ã,
respectively. Since (15) is an LP problem with q̃ variables,
it can be solved much faster than the original problem (9).

In the second phase (Steps 7 to 11), the QP problem (1)
is solved by using a decomposition method. In Step 7, the
initial solution x(0) is set to the feasible solution obtained
in the first phase. In Step 8, the LP problem (13), which
has m + 1 variables and at most 2n inequality constrains, is
solved to check whether the KKT condition (5) is satisfied
or not for x(k). In Step 9, q variables are selected for the
working set based on the degree of violation of the KKT
condition defined by (14). In Step 10, the values of the se-
lected variables are updated by solving the QP subproblem.
Let us assume for simplicity that I(k)

B = {1, 2, . . . , q}. Then
the QP subproblem is expressed as

Minimize 1
2 xT

BQBBxB + (QBN x(k)
N + cB)T xB

Subject to ABxB = b − AN x(k)
N

xB ≥ 0
(16)

where xB, x(k)
B and cB are the vectors composed of the first

q components of x, x(k) and c, respectively; QBB is the q×q
matrix composed of the first q rows and the first q columns
of Q; QBN is the q × (n − q) matrix composed of the first
q rows and the last n − q columns of Q; AB and AN are
the first q columns and the last n− q columns of A, respec-
tively. Since (16) is a QP problem with q variables, it can
be solved much faster than the original problem (1).

5. Experiments

The authors have implemented the two-phase decompo-
sition algorithm in Scilab 4.1.2, which has the functions
“linpro” for solving LP problems and “quapro” for QP
problems, and compared its computation time with those
of the conventional decomposition algorithm [4] and the
direct method. By the direct method we mean that (1) is
solved simply by the function “quapro”.

QP problems were randomly generated as follows. Com-
ponents of the matrix A and the vectors c and b were set
to random numbers between −1 and 1. The matrix Q was
generated by Q = PT P so that Q becomes positive semi-
definite, where components of the matrix P were set to ran-
dom numbers between −1 and 1.

Throughout our experiments, ε1, ε2 and ε3 in the pro-
posed algorithm are all set to 10−6. Also, q̃ and q, the sizes
of the working set in the first and second phase, respec-
tively, are set to the same value for simplicity. Programs
were run on a PC with Intel Core 2 Quad 2.66GHz and
3.25GB RAM.

First, we fixed the number of equality constraints to 10
and measured the computation times of the three methods
for n = 400, 900 and 1400. Results are shown in Fig.1.
When n = 400, the two-phase algorithm is a little faster
than the conventional algorithm for all q but slower than
the direct method except the case where q = 200. When
n = 900, on the other hand, the two-phase algorithm is
much faster than the direct method for all q, while the con-
ventional algorithm is still slower than the direct method.
When n = 1400, the two-phase algorithm is much faster
than others and the direct method is the slowest for most
values of q.

Next, we fixed the number of equality constraints to 100
and measured the computation times of the three methods
for n = 400, 900 and 1400. Results are shown in Fig.2.
When n = 400, the direct method is the fastest and the two-
phase algorithm is slower than the conventional algorithm
for all q. When n = 900 and n = 1400, the two-phase
algorithm is faster than the conventional algorithm for all q
but slower than the direct method for many q.

6. Conclusion

In this paper, we have proposed a two-phase decompo-
sition algorithm for solving general QP problems. Experi-
mental results show that the proposed algorithm is very ef-
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Figure 1: Computation times of the direct method (blue),
the conventional decomposition algorithm (green) and the
two-phase decomposition algorithm (red) for m = 10. (a)
n = 400. (b) n = 900. (c) n = 1400.

fective when the number of variables is large and the num-
ber of equality constraints is small but not so effective when
the number of equality constraints is large. This is because
an LP problem with m + 1 variables has to be solved ev-
ery time when the working set is selected. Reducing the
computation time for the working set selection is a future
problem. Another future problem is to prove theoretically
the global convergence of the algorithm.
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Figure 2: Computation times of the direct method (blue),
the conventional decomposition algorithm (green) and the
two-phase decomposition algorithm (red) for m = 100. (a)
n = 400. (b) n = 900. (c) n = 1400.
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