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Abstract—Dynamics and stability of intrinsic localized
modes (ILM) in graphene sheets are investigated. Structure
of ILM is investigated by numerical solution obtained by a
method coupling molecular dynamic (MD) method and it-
eration method. Moreover linear stability of ILM in the
graphene sheet under strain is presented, based on the Flo-
quet theory.

1. Introduction

Intrinsic localized mode (ILM) or discrete breather (DB)
has extensively attracted in nonlinear physics recently[1,
2]. ILM is a temporal-periodic, space-localized structure
which is excited in nonlinear lattices. Since ILM is vibra-
tion due to nonlinearity of systems, vibrational frequency
is out of linear phonon bands which are produced due to
discreteness of the systems. Various studies[3] have been
done not only in theoretical aspects such as existence, sta-
bility and mobility, but also applications in real systems
such as large structures[4], mechanical systems[5] and mi-
cromechanical systems[6].

It is well known that structure of atoms in crystalline
can be modeled as a lattice model. Phonon band, which is
produced from discreteness of the lattice model, contains
important properties of solid states of crystals. Interaction
potential which determines dynamics of crystals is intrin-
sically anharmonic. Nonlinear dynamics can appear when
displacement of atoms becomes large. Therefore ILM can
be excited in crystalline.

Excitation of ILM in materials has been studied in vari-
ous aspects. Marı́n has investigated numerically excitation
of moving ILMs in a 2D hexagonal lattice with Lenard-
Jones potential and on-site potential, which is a model of
layered materials[7]. Cuevas has studied interaction of
ILM and impurities such as vacancies and interstitial de-
fects in 1D Frenkel-Kontorova (FK) lattices[8]. They have
also investigated migration of vacancies due to collisions
between vacancies and ILMs[9].

Molecular dynamics (MD) method is widely used for in-
vestigating mechanical properties in atomic scale of mate-
rial. Since interaction potential which is heuristically given
has nonlinearity, Excitation of ILM can be observed in MD
simulations. Yamayose[11] has studied excitation of ILM
in graphene sheets, which is 2D structure of carbon atoms.
ILM excitation in carbon nanotubes (CNTs) with specific
chirarities has been also reported[12, 13]. Shimada has re-

Figure 1: Schematic description of model

ported that ILM plays an important role in nucleation of
defect’s in CNTs such as Stone-Wales transformation[14].

It is well known that mechanical properties of materials
can be usually described as a response of stress and external
force acting of the materials. In microscopic view, arrange-
ment of atoms can change. ILM can also be affected by this
rearrangement of atoms, i.e. strain of lattices.

ILMs excited in MD simulations have finite lifetime. It
should be noted that ILMs excited in MD simulation is not
a exact numerical solutions, since they are perturbed by
thermal fluctuation of surrounding atoms. Constructing the
exact numerical solution of ILM is useful for investigating
basic properties of ILM. For example, once we obtain the
numerical solution, it is possible to study their stability.

In this study, we propose the numerical method for ob-
taining the exact numerical solutions in crystals by cou-
pling MD method and iteration method. We also investi-
gate the linear stability of numerical solutions of ILMs by
Floquet theory of periodic solutions. This method is ap-
plied to the graphene sheet which is strained by the external
forces.

2. Model

We consider two dimensional hexagonal lattice which
are consist of carbon atoms. Atom’s motion is limited in the
plane. Fig. 1 shows an example of models. Periodic bound-
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ary condition is considered in x-direction. Top and bottom
boundaries are fixed. Fixed boundaries are displaced in or-
der to give strain to the system. Thermal bath is not con-
nected to the system.

Interaction of atoms is modeled by a interaction potential
proposed by Brenner[15]. Hamiltonian of Brenner poten-
tial is written as follows:

H =
N∑
i

∑
α

(pαi )2

2m
+

1
2

N∑
i

N∑
j,i

N∑
k,i, j

Φi jk(ri j, ri j, θi jk), (1)

where m is mass of the carbon atom, N is number of atoms,
i, j, and k are the indices of the carbon atoms, α indicates
the coordinates x and y, pαi is momentum of the atoms, Φi jk

is a interatomic potential, ri j = x j − xi, rik = xk − xi is a dis-
tance between atoms i- j, and i-k, θi jk is the angle between
two bonds i- j and i-k.

3. Numerical Method

3.1. Searching Numerical Solution

Displacement and momentum of N atoms in a graphene
sheet can be described 4N variables. Let X = {xi, pi} be
state variables of the graphene sheet. Temporal evolution
of the state variables can be described by the equation of
motion

Ẋ = f (X; H), (2)

where f is a function of X and depends on H. Let
A(t1; X(t0)) is a map of the state variables from time t0 to
t0 + t1:

X(t0 + t1) = A(t1; X(t0))X(t0). (3)

ILM is a time-periodic solution. Therefore ILM takes a
periodic orbit in the phase space. Let T be a period of ILM.
A state variable XILM which is on the periodic orbit satisfies
a relation XILM(t + T ) = XILM(t). Therefore we obtain an
equation:

XILM(t) = A(T ; XILM(t))XILM(t), (4)

for any t.
Searching a numerical ILM solution with a period T is

equivalent to solving equation (4) for T . We search the
solution of (4) by the conjugate gradient method. The map
A(T ; XILM(t)) can be obtained by the temporal evolution
of equation (2). This temporal evolution is done by MD
simulation of the graphene sheet. We search ILM solution
following procedure:

1. Determine a initial guess of a ILM solution of equa-
tion (4) with period T .

2. Calculate the temporal evolution during T from the
guess by performing MD simulation.

3. Evaluate the difference between the guess and the re-
sult of temporal evolution.

4. If the difference is smaller than tolerance, we deter-
mine the guess is the solution. If not, new guess is
calculated by conjugate graduate method and we re-
turn to 2.

Equation (2) has 4N unknown variables. It is important
to make a good initial guess for obtaining convergence so-
lutions. Therefore we firstly search the solution of the sys-
tem with small degree of freedom. Then we increase the
degree of freedom and use the previous solution as the ini-
tial guess of new system.

3.2. Stability Analysis

Once we obtain the ILM solution XILM, we can analyse
linear stability of the ILM. Let ξ be a small perturbation
between XILM. The variational equations for ξ is given by

ξ̇ =
∂ f (X; H)
∂X

∣∣∣∣∣
X=XILM

ξ. (5)

Coefficients of equation (5) are T -periodic. Stability of the
perturbation ξ can be determined by checking properties
of the monodromy matrix M. The monodromy matrix is
defined as

ξ(T ) =M(T )ξ(0). (6)

If the monodromy matrix M has an eigenvalue larger than
unity, the perturbation becomes unstable towards the corre-
sponding eigenmode.

Monodromy matrix M cannot be obtained explicitly. In-
stead, we can calculate M numerically. Consider 4N vec-
tors ξ(i)(0) whose components are zero except that i-th com-
ponent is unity. M is given by the

M = (ξ(1)(T ), ξ(2)(T ), · · · , ξ(4N)(T )), (7)

where ξ(i)(T ) is the temporal evolution from t = 0 to t = T
of the i-th vector.

Note that we have to calculate the ILM solution XILM in
integrating the variational equations (5).

4. Results and Discussion

Fig. 2 shows structure of ILM obtained by the iteration
method. Color of atoms indicates the kinetic energy of the
atoms (blue is low and red is high). Two carbon atoms
which are connected by a bond vibrate along the direction
parallel to the bond. Surrounding atoms vibrate slightly.
Period of the vibration is 19ps. This structure of ILM is the
same as those reported in [11]. This type of ILM seems to
be one of the most typical structures of ILM excited in the
graphene sheet.

Fig. 3 shows the temporal evolution of the displacement
of the two atoms by MD method. The numerical solu-
tion of ILM is used as a initial condition. In this figure,
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Figure 2: Snapshot of structure of ILM. Color indicates
temperature of the atom.

we show dynamics of atoms during about 0.2ns. However,
we observe that the numerical solution of ILM alive about
10ns duration. Angular frequency of ILMs is larger than
the maximum angular frequency of the phonon band[11].
Amplitude of the vibration of bond is about 0.3Å, which is
about 20% of the equilibrium length of the bond.

We calculate the ILM solution in graphene sheets apply-
ing the strain in y-directions. We introduce strain to the
graphene sheet from 0% to 10%. At first, the system is
relaxed by minimizing the total energy by using conjugate
graduate method. Nest, we search the ILM solution from
initial guess which two neighboring atoms are displaced
with large amplitude.

We find that structure of ILM does not change drasti-
cally. Amplitude of ILM of the same period becomes larger
when the strain of the system becomes larger. Amplitude of
ILM grows mainly in stretching direction. Growth in com-
pressing direction is small, since larger gradient of the in-
teraction potential between atoms against compression than
that against stretch.

Effect of strain mainly appears in stability of ILMs. Fig.4
shows the distribution of eigenvalues of monodromy ma-
trix in the complex plane in the cases of no strain and 10%
strain. It is found that distribution of eigenvalues varies as
the strain is introduced. Some unstable perturbation modes
also vary its values. Therefore the unstable mode which
has largest growth rate can be also varies. This fact leads
to change of structure of the most unstable modes.
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Figure 3: Displacement in y-direction of two atoms in ILM

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Im

Re

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Im

Re

Figure 4: Distribution of eigenvalues of ILMs: left no
strain, right 10% strain

We can classify the most unstable mode into three cases
in the view of their pattern. Fig. 5 shows displacement pat-
tern of three cases. In the case that strain is less than 2%,
atoms surrounding ILM become unstable but atoms in ILM
do not. In the case that strain is from 2% to 5%, atoms in
ILMs can also become unstable in one mode. In the case
that strain is greater than 6%, atoms in ILM are unstable in
both modes.

It is interesting that this unstable mode produce shear
motion near ILM. It can be seen that a pair of three atoms in
near ILM move in opposite direction. In [14], cutting and
rebonding between carbon atoms due to ILM is reported.
Excitation of unstable mode which has shear motion can
be an explanation for a mechanism of cutting and rebondig
phenomena.

5. Conclusion

In the present study, we proposed the numerical method
for obtaining solution of ILM in crystals by coupling MD
method and irrational method. We also show the stability
analysis of ILM in crystals. Numerical solutions obtained
by the proposed method have good accuracy for dynamic
simulations. We investigate the structure and stability of
ILM in the strained graphene sheet. It is found that the
unstable mode excited in the strained case leads to shear
motion near atoms near ILMs.
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Figure 5: Unstable perturbation mode with the maximum
growth rate. Atoms inside black circle are in ILM
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