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Abstract—The Nagumo-Sato model is one of mathe-
matical neuron models described by a piecewise linear dif-
ference equation. Since there is a conditional character
which is discontinuous at the threshold value, the system
can be classified as a hybrid dynamical system. Bifurca-
tion phenomena are occurred by changing internal param-
eters and chaotic attractors are also given. The dynamical
properties were exactly studied analytically.

In this paper, we investigate the bifurcations of
diffusively-coupled Nagumo-Sato models. By using com-
plementarity a shooting algorithm and brute-force method,
complete bifurcation diagrams are obtained. In spite of
the discontinuities inside the coupled system, our shoot-
ing method can solve bifurcation problems. A period-
locking regions edged by border-collision bifurcation sets
are found, and chaotic regions are distinguished by a tan-
gent bifurcation. We discuss on changing bifurcation struc-
tures with parameter variations.

1. Introduction

A Nagumo-Sato model is one of mathematical neuron
models[1, 2] written as follows:

xk+1 = f (xk) (1)

f (x) =
{

ax − b + 1 (x < C)
ax − b (x ≥ C) (2)

This model is included in discrete-time piecewise affine
systems. In these systems, a flow as a solution of a differ-
ence equation is suddenly switched to another difference
equation by getting across the system border. In control
engineering field, if a state space has some non-smooth
characteristics, the system is called a hybrid system. Here,
discrete-time piecewise affine systems is categorized in hy-
brid systems. Thus the Nagumo-Sato model is also re-
garded as one of hybrid systems[3].

Bifurcation problems on limit cycles observed in a hy-
brid system is computable if the Poincaré section is defined
on the manifold given by the condition of non-smoothness
characteristics and a suitable transformation (projection) of
the state into local coordinate system[4] is provided. How-
ever, as far as authors know, less discussion has been done
on bifurcations in hybrid discrete systems.

Various coupled systems has been researched in neuron
models. Especially, the gap junction is an important things
of the structure of the neuron.

In this paper, we analyze bifurcations of a coupled sys-
tem of Nagumo-Sato models in the sense of a natural exten-
sion for continuous-time gap junction systems as follows:{

xk+1 = f (xk) + k(xk + yk)
yk+1 = f (yk) + k(yk + xk) (3)

We compute bifurcation parameter values by the shoot-
ing method, and a lot of border-collision bifurcations are
found[5]. We compare bifurcations of the single Nagumo-
Sato model with coupled Nagumo-Sato model, and discuss
the characteristics of the model.

2. Bifurcations

2.1. Variational equations

Even the characteristics of the system contains non-
smoothness such as hysteresis, break points, we can com-
pute bifurcation parameter value numerically by using a
shooting method unless the derivative of the characteris-
tics is not defined, i.e., a smoothness of the characteristics
for the state is not required. Rewrite the system (3) as

x j(k + 1) = f j(x(k)), (4)

where j = 1, 2, . . . ,m, k is a discrete time, x(k) =
(x(k), y(k)), and each f j : R2 → R2 is smooth. There are
borders given by q j(x) = 0 and it switches the system from
f j to f j+1 if the state x(k) is given by exceeding any border
from x(k − 1).

Let us denote the solution of Eq.(4) as x(k) = ϕ(x0, k).
It satisfies the initial condition x(0) = ϕ(x0, 0) = x0. The
non-smoothness of Eq. (4) affects the derivative of the solu-
tion. In fact, a global derivatives cannot be obtained, how-
ever, according to the position of x, we can split the system
(4) into two linear systems. Similarly, the derivatives of
period-n solutions, i.e., the solutions of the first variational
equations can be evaluated by solving the following:

∂ϕ

∂x0
(k + 1) =

∂ f n

∂x
∂ϕ

∂x0
(k),

∂ϕ

∂x0
(0) = I (5)
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where ∂ f n/x is a Jacobian matrix, but a careful evaluation
is required to compute it since it depends on locations of
periodic points thus it is not a fix matrix.

2.2. Border-collision bifurcations

Border-collision bifurcations are occurred regardless of
local characteristics of fixed/periodic points. So border-
collision bifurcations are not obtained by the method based
on eigenvalues. When the an orbit of the attractor hits with
the border in the system, the border-collision bifurcation is
occurred. The conditions are written as:{

ϕ(x0, λ) − x0 = 0
f (x0, λ) −C = 0 (6)

The point of border-collision bifurcation x0 and the param-
eter value λ can be obtained by solving Eq. (6).

2.3. Bifurcation diagrams

Figure 1 shows one dimensional bifurcation diagram and
the maximum Lyapunov exponent of Eq. (3), when param-
eters are b = 0.5, C = 0.5 and k = 0.1, the initial value is
(x, y) = (0.6, 0.1). In this figure, a is increased from a = 0,
the orbit of x changes from period-2 to period-3, when it
is occurred a bifurcation. However, Lyapunov exponent is
not 0 when this bifurcation occurs, therefore it has a pos-
sibility of the border-collision bifurcation. In Fig. 1, zero
Lyapunov exponent is happened when x = 0.8, and further
increment of a there, chaos is observed. It is related with
the tangent bifurcation.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

x

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  0.2  0.4  0.6  0.8  1

L
y
ap

u
n
o
v
 e

x
p
o
n
en

t

a

Figure 1: One dimensional bifurcation diagram (red) and
Lyapunov exponent (blue)

Figure 2 shows example of the situation of border-
collision bifurcation in the vicinity of a = 0.61 in Fig.
1. Red points is a period-3 attractor and green points is
a period-8 attractor. If the period-3 attractor moves along
the arrow by a parameter variation, by hitting the border

x = C, we have suddenly the period-8 attractor. This
border-collision bifurcation does not have a bistable situ-
ation.
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Figure 2: Situation of border-collision bifurcation

Figure 3 is the bifurcation diagram of coupled Nagumo-
Sato model. Symbols mean:

• T : Tangent bifurcation.

• Bnk : Border-collision bifurcation of period-n, k is the
reference number.

We calculate several bifurcation curves Fig. 3. We observe
that a lot of border-collision bifurcations are occurred from
the Eq. (3) and they are computable solving Eq. (6). There
is an big island of period-1 on the upper left, and period-
2 on lower left. When a increases, it is occurred border-
collision bifurcations and consists of high-periodic areas.
It is noteworthy that border-collision bifurcations B11, B31,
B32, B33 and B34 do not terminate on the tangent bifurcation
T , and they lie on chaotic area. Thus they are regarded as
bifurcations for unstable periodic points.

3. Characteristics

We compare the bifurcations of single Nagumo-Sato
model with coupled it. Figure 4 is bifurcation diagram of
Nagumo-Sato models, there are (a)single and (b)coupled,
and Fig. 5 is enlarged diagram of Fig. 4 that the vicinity of
tangent bifurcation. In Fig. 4, we use brute-force method
to compute bifurcation diagrams, because hi-periodic fields
have been overcrowded. In this figure, the horizontal and
vertical axes are a and b respectively, where 0.0 < a < 1.0,
0.0 < b < 1.0. The blue region indicates the parameter re-
gion which shows a period-1 (fixed point) in the state space.
In the same way, the red region is period-2, the green is
period-4, and the black region shows a chaotic area, if over
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Figure 3: Bifurcation diagram of the coupled Nagumo-Sato
model

period-13 when coloring by color of the remainder divided
by 13.

In Figure 4 and 5, as for the coupled model, the to-
tal number of border-collision bifurcations decreases com-
pared with the single model, because a lot of border-
collision bifurcations are occurred by parameter a ≈ 1.0,
however the tangent bifurcation is occurred with a = 0.8.
Where the Jacobian matrix of Eq. (3) are:

∂ f1

∂x1
=

(
a + k −k
−k a + k

)
,
∂ f2

∂x2
=

(
a + k −k
−k a + k

)
,

(7)
and the eigenvalue of Eq. (7) is:

µ = a + k ±
√

(a + k)2 − a2 + 2ak. (8)

The position of tangent bifurcation is decided depending on
the coupling factor k, because is decided by the eigenvalue
µ. Figure 6 is the bifurcation diagram that parameter k =
0.2 and k = 0.4, and Fig. 7 is the bifurcation diagram that
the horizontal and vertical axes are a and k. The tangent
bifurcation where is border of the chaotic area is changed
as coupling factor k.

Figure 8 is the phase portrait of the chaotic area. In Fig.
8 (a) when parameter a = 0.9, the chaos appears to both
sides across y = x, however (b) when a = 1.1, the chaos
appears that is wide range and unsteady.

4. Conclusions

We compute bifurcation sets of the coupled Nagumo-
Sato model by the shooting algorithm as the hybrid system,
and we show a lot of border-collision bifurcations and the
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Figure 4: (a) Bifurcation diagram of the single Nagumo-
Sato model, parameters are 0.0 < a < 1.0, 0.0 < b < 1.0,
C = 0.5. (b) Bifurcation diagram of the coupled Nagumo-
Sato model, in the parameter range with k = 0.1

tangent bifurcation. It is clarified that the size of the chaotic
region is radically depended on the value of parameter a.
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Figure 5: Enlarged diagram of bifurcation diagram, the
vicinity of tangent bifurcation. (a) single model, 0.7 <
a < 1.1, 0.3 < b < 0.7, C = 0.5. (b) coupled model,
0.5 < a < 0.9, 0.3 < b < 0.7, C = 0.5, k = 0.1.
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Figure 6: Bifurcation diagrams (a) 0.0 < a < 1.0, 0.0 <
b < 1.0, k = 0.2. (b) 0.0 < a < 1.0, 0.0 < b < 1.0, k = 0.4.
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Figure 7: Bifurcation diagram, 0.0 < a < 1.0, 0.0 < k <
0.5, b = 0.5 C = 0.5.
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Figure 8: Phase portraits of chaos fields (a) parameters are
a = 0.9, b = 0.5, C = 0.5, k = 0.1 (b) a = 1.1 other is the
same
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