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Abstract—Power electronic DC/AC converters play an
important role in modern power supply technology. As pa-
rameters are varied, such converters may display a variety
of unusual phenomena caused by the interaction of two in-
ternal oscillatory modes (the ramp cycle and the external si-
nusoidal reference signal). In this paper we consider a non-
autonomous piecewise-smooth map describing the behav-
ior of a DC/AC power converter. The dynamics of the map
are investigated using a one-dimensional autonomous stro-
boscopic map. We discuss a new type of complex dynam-
ics in which chaotic oscillations appear through an unusual
sequence of border collision bifurcations, differently from
a well-known direct transition from a stable fixed point to
chaos.

1. Introduction

Power electronic DC/AC converters (also known as in-
verters) [1, 2] provide AC power from a DC source. Con-
verters of this type are used in backup systems for sen-
sitive computers or hospital equipment and as so-called
grid-tie inverters to convert low voltage DC power from
a solar panel into AC power. Further applications of such
converters include uninterruptible power supplies (UPS),
active filters, flexible AC transmission systems (FACTS),
voltage compensators, to list a few [1]. By contrast to
DC/DC converters where the constant reference signal only
changes in response to variations in the operational condi-
tions, a DC/AC converter requires a sinusoidal reference
signal that besides the amplitude of the desired output volt-
age (or current) also prescribes the frequency and phase of
this output. This form of external forcing introduces an
additional source of interaction between the low frequency
power mode and the high frequency switching cycle, and
this interaction gives birth to a variety of unusual nonlinear
dynamic phenomena, including for example the recently
reported phase synchronized quasiperiodicity [3, 4, 5].

The purpose of the present paper is to investigate some
of the unusual cascades of border collision bifurcations that
are involved in the transitions from stable period-1 dynam-
ics to chaos in a single-phase pulse-width modulated H-
bridge inverter.

2. Non-autonomous piecewise-smooth map

The dynamics of our single-phase H-bridge inverter
may be represented by the following non-autonomous
piecewise-smooth 1D map:

xk+1 = F(xk, k), k = 0, 1, 2, ... (1)

with

F(xk, k) =



FL(xk) = eλ(xk + 1) + 1,
if xk 6 s−k ;

FM(xk) = eλ(xk − 1) + 2eλ(1−zk) − 1,
if s−k < xk < s+

k ;

FR(xk) = eλ(xk − 1) − 1,
if xk > s+

k ,

(2a)
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−
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2P
xk +

1
2
. (2c)

A detailed description of the inverter circuit, the function-
ing of the inverter, and its areas of application can be found
in [5, 6]. Here, one can also find an explanation of the
model equations and the description of the method used to
derive the map (1).

The (dimensionless) dynamic variable x is the normali-
zed load current and k = 1, 2, ... represents the normalized
discrete time variable. Hereby xk denotes the value of the
dynamic variable x at the discrete time k (switching time),
and the auxiliary variable zk ∈ [0, 1] represents the relative
pulse duration in the kth ramp cycle.

The parameter λ = −1/τ∗ is defined by the time constant
τ∗ of the converter filter, normalized relative to the ramp pe-
riod. The parameter P controls the amplitude of the ramp
function, q represents the normalized amplitude of the si-
nusoidal reference signal. The parameter α is an amplifi-
cation constant and Γ is the normalized input voltage to the
inverter.

The value m = T/a is referred to as the frequency mod-
ulation ratio, where a and T denote, respectively, the ramp
period and the period of the reference sinusoidal signal. It
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is worth to emphasize that the value of m influences di-
rectly the quality of the output sinusoidal signal. To obtain
an output signal with a low-distortion, it is necessary to use
a high value of m.

The normal operational regime for DC/AC converters is
the stable period-1 dynamics. Under normal operation, suf-
ficiently low-distortion for the output signal can usually be
achieved through the choice of parameters for the output
filter (value of τ∗) or the feedback corrector. However, in-
creasing the value of the corrector feedback gain α in order
to attain a more accurate control may lead to loss of sta-
bility for the period-1 mode and to the appearance of sub-
harmonic or chaotic oscillations. Such dynamics leads to
distortions of the output signal.

In the following simulations we have chosen P = 20.0;
q = 40.0; λ = −0.2; m = 100. The corrector gain factor
α and the normalized input voltage Γ are used as the main
control parameters: α > 0, 25.0 < Γ < 60.0.

3. Autonomous stroboscopic map

Clearly, the non-autonomous 1D map (1) can easily be
transformed into a 2D autonomous map. Moreover, as the
cosine function in Eq. (2) is m-periodic, for any x the equal-
ity

F(x, k) = F(x, k + m)

is satisfied. Therefore, the mth iterate

xk+1 = f m(xk)
= F(F(. . . F(F(xk, 0), 1) . . . ),m − 2),m − 1)

(3)

represents a 1D stroboscopic map for the 2D autonomous
variant of map (1) which completely reflects the dynamics
of map (1).

To understand the properties of map (3) it is worth notic-
ing that for each fixed k ∈ {0, . . . ,m−1} the function F(x, k)
is a continuous piecewise-smooth bimodal function. On the
two outer partitions (i.e. for xk 6 s−k and for xk > s+

k ) the
function f is defined by linearly increasing branches FL,
FR, whereas on the middle partition, i.e. for s−k < xk < s+

k it
has a non-linear decreasing branch FM. As the function f m

results from iterated applications of continuous piecewise-
smooth functions F(x, k), k = 0, . . . ,m − 1, it represents a
continuous piecewise-smooth function as well. However,
the number of border points of f m may be very high. In-
deed, these border points are given by the border points s±k ,
k = 0, . . . ,m−1 of F and by their preimages. Therefore, de-
pending on other parameters, the number of border points
of this map may grow exponentially with increasing m.

Note that the stable period-1 dynamics corresponding to
the normal operational regime of the considered class of
converter systems is represented in map (3) by a stable
fixed point. Accordingly, our goal is reduced now to the
investigation of the stability domains of the fixed points of
map (3) and in particular of its boundary.

Figure 1: Bifurcation structure of the (α,Γ)-parameter
plane of map (3). The stability domain of the fixed point
and the domain of chaotic dynamics are denoted by Π1 and
Π∞, respectively. The bifurcation diagram along the hor-
izontal line marked at Γ = 36 is shown in Fig. 2. The
functions f m at the parameter values marked with A – F
are shown in Figs. 3(a) – (f), respectively.

4. Bifurcation structure

Fig. 1 shows an example of the bifurcation structure that
can be observed in the (α,Γ)-parameter plane of map (3).
The most striking feature of this figure is the unusual form
of the boundary between the stability domain of the fixed
point Π1 and the domain of chaotic dynamics Π∞. Indeed,
a direct transition from a stable fixed point to chaos via
a border collision bifurcation is a well-known phenomenon
in piecewise-smooth systems. Still, the questions arise why
the boundary between Π1 and Π∞ has such a frayed shape
and which the bifurcations are that cause this structure.

In order to examine these questions let us consider a 1D
bifurcation diagram showing the transition from Π1 to Π∞.
An example for such a diagram is illustrated in Fig. 2. In
this diagram, three zones can clearly be distinguished.
(i) In the left part of the bifurcation diagram the fixed point
is stable. As already mentioned, this corresponds to the de-
sired dynamics of the converter.
(ii) In the right part of the bifurcation diagram the map
shows chaotic behavior. Clearly, for the modeled converter
this mode of operation is not acceptable.
(iii) In the middle part of the bifurcation diagram, the at-
tractor of the map is still given by a stable fixed point.
However, the location of this fixed point in the phase space
is strongly dependent on the parameter which is clearly re-
flected in the oscillations of the bifurcation diagram. For
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(a)

(b)

(c)

Figure 2: Transition from a stable fixed point to chaos
via a cascade of border collision bifurcations. Rectangles
marked in (a) are drawn enlarged in (b) and (c). Stable fixed
points are shown red, unstable fixed points blue, chaotic at-
tractors green. The functions f m at the parameter values
marked in (a) with A – F are shown in Figs. 3(a) – (f), re-
spectively. Γ = 36.

increasing α these oscillations become more and more
strong so that in a practical situation a small fluctuation of
the parameters leads to a significant change of the output
signal. Hence, the dynamics is not robust in this parameter
region.

As one can see in the the enlargement shown in Fig. 2(b),
in extended parameter ranges the only asymptotic dynam-
ics of map (3) is given by a stable fixed point. However, this
fixed point undergoes a sequence of bifurcations causing
it to oscillate in an irregular manner in dependency on α.
Moreover, as shown in Fig. 2(c), for increasing α the fixed
point can be destabilized and eventually restabilized again.
When the fixed point is unstable, other attractors of map (3)
appear, in particular chaotic. The question is now, which
mechanism leads to these phenomena.

To explain the observed cascades of bifurcations let us
consider how the shape of the function f m changes when
the parameters are varied along a path which leads from
Π1 to Π∞. An example corresponding to the bifurcation
diagram shown in Fig. 2 is illustrated in Fig. 3. As one
can see, for increasing α the function moves upwards, but
this movement is marginal. The main effect of the increas-
ing α is the decrease of the distance between the border
points of f m. Note that far away from the boundary be-
tween Π1 and Π∞ (see Fig. 3(a)) the complete portion of
the phase space shown in Fig. 3 contains only one branch
of f m. Hereby the slope of this branch is close to zero.1

For increasing α, the distance between the border points of
f m decreases (see Fig. 3(b)), so that the fixed point moves
from one branch of f m to the next one. Therefore, the bi-
furcations forming the cascades described above are border
collision bifurcations. Clearly, as long as the slopes of the
branches, to which the fixed point belongs before and af-
ter the bifurcations, do not exceed one in modulus, these
border collisions are not associated with a loss of stability
of the fixed point (accordingly, we can not observe them in
Fig. 1). Following the wide-spread terminology [7], these
bifurcations are referred to as persistence border collisions.
Accordingly, we classify the oscillations of the stable fixed
point which are clearly visible in the bifurcation diagram
(see Fig. 2) as cascades of persistence border collisions.

With increasing α, as the border points of f m move
closer to each other, it may also happen that the slopes of
some of the branches of f m exceed one in modulus, while
the slope of other branches are still less that one in modu-
lus (see Figs. 3(c) and (d)). For simplicity, we denote the
branches of first kind as stable and of the second ones as
unstable. In this case, as the fixed point reaches an un-
stable branch, it is momentary destabilized, but eventually,
for further increasing values of α it reaches a stable branch
and is restablized again, as shown in Fig. 2(c). As long
as the fixed point belongs to an unstable branch, the map

1Speaking rigorously, the term “slope” can not be applied to branches
of f m, as they are given by nonlinear functions. Still, for simplicity of
the exposition we use this term, as at the considered parameter values the
branches of f m are almost linear.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Shape of the function f m close to its intersection
with the diagonal at Γ = 36 and (a) α = 5.4; (b) α = 6.2;
(c) α = 6.45; (d) α = 6.53; (e) α = 6.6; (f) α = 6.9.

has other attractors, which are either harmonic 2k-cycles,
k = 1, 2, . . . , or chaotic attractors. As shown in [6], these
attractors may undergo further bifurcations (in particular,
merging and final bifurcations, see [8] for details), and may
coexist.

With α further increasing, the border points of f m con-
tinue to move closer to each other, so that the number
of stable branches decreases and the number of unstable
branches increases. For example, in Fig. 3(e) only a few
stable branches can be observed. Accordingly, the param-
eter intervals in the bifurcation diagram associated with
chaotic attractors grow, and the intervals associated with
the stable fixed point vanish. Finally, all the branches of f m

become unstable (see Fig. 3(f)) and the map shows chaotic
dynamics only.

5. Conclusion

The paper has presented an example of a new type of
complex dynamics in a power electronic DC/AC converter,
caused by the presence of two internal oscillatory modes
(the ramp cycle and the external reference signal). We con-
sidered a model of a single-phase H-bridge inverter with
pulse-width modulated control. The behavior of this in-
verter is described by a non-autonomous piecewise-smooth
map. The normal operational regime for such converters is
the regime of stable period-1 dynamics, corresponding to a
stable fixed point of the one-dimensional autonomous stro-
boscopic map (3). We have shown that, under variation of
the parameters, this stable fixed point undergoes an unusual
sequence of border collision bifurcations that gives birth to
different forms of chaotic dynamics. The observed bifurca-
tion phenomena differ essentially from the well-known di-
rect transition from a stable fixed point to chaos frequently
occurring in piecewise-smooth maps.
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