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Abstract—It is well known that a large number of prob-
lems for dimensionality reduction result in the trace ratio
optimization problem (TROP). Recently, Wang et al. have
proposed an iterative procedure for solving TROP. They
transform TROP into a trace difference optimization prob-
lem (TDOP) which is efficiently solved with the eigenvalue
decomposition method. However, the mechanism of the
transformation of TROP into TDOP is not clear in their
papers. In this paper, we derive the TDO algorithm for
TROP on the basis of the Lagrange multipliers. Moreover,
we show that multilinear principal component analysis pro-
posed by Lu et al. recently is a special case of tensor sub-
space learning which is also formulated as a TROP.

1. Introduction

Dimensionality reduction is one of the most fundamen-
tal research topics in computer vision and pattern recogni-
tion. The commonly used dimensionality reduction meth-
ods include supervised approaches such as linear discrim-
inant analysis (LDA) [1, 2], and unsupervised ones such
as principal component analysis (PCA) [3]. These meth-
ods are vector-based, i.e., input data are always arranged
in a vector form regardless of the original data represen-
tations. It has been found that the vector-based meth-
ods encounter the singularity problem intrinsically. To ad-
dress this problem, several extensions of both LDA and
PCA have been presented. For matrix-based LDA meth-
ods, Ye et al. [4] proposed two-dimensional linear discrim-
inant analysis (2DLDA), and Cai et al. [5] proposed tensor
LDA. For higher-order tensor-based LDA method, Yan et
al. [6, 7] proposed discriminant analysis with tensor rep-
resentation (DATER) or multilinear discriminant analysis
(MDA). For matrix-based PCA methods, Yang et al. [8]
proposed two-dimensional PCA (2DPCA), and Ye et al.
[9] proposed generalized PCA (GPCA), and Cai et al. [5]
proposed tensor PCA. For higher-order tensor-base PCA
method, Lu et al. [10] proposed multilinear PCA (MPCA)
recently.

Yan et al. [11] proposed a general framework for dimen-
sionality reduction called graph embedding. They showed
that previous methods for dimensionality reduction includ-
ing PCA, LDA, locality preserving projection (LPP) [12],
isometric feature mapping (ISOMAP) [13], locally linear

embedding (LLE) [14], and Laplacian eigenmap [15] can
be reformulated into the graph embedding framework. Ten-
sor subspace analysis (T'SA) proposed by He et al. [16] is
also included in the framework [21]. Each method included
in the graph embedding framework is formulated as a trace
ratio optimization problem (TROP). Conventionally, TROP
is often simplified to a ratio trace optimization problem
(RTOP) as summarized in [2, 17, 18, 19], since RTOP
can be reduced to the corresponding generalized eigenvalue
problem which can be solved analytically. Wang et al.
[20, 21] proposed an efficient iterative procedure to solve
TROP directly, and proved that the value of the trace ratio
increases monotonically in the procedure. In each iteration
of the procedure, a TROP is transformed into a trace dif-
ference optimization problem (TDOP) which is efficiently
solved with the eigenvalue decomposition method [2]. Re-
cently, the TDO algorithm is utilized in tensor linear Lapla-
cian discrimination (TLLD) proposed by Zhang et al. [22].
However, the mechanism of the transformation of TROP
into TDOP is not clear in their papers [20, 21]. Recently,
Nie et al. [23] analysed TROP for vector data and derived
a faster TDO algorithm, and proposed semi-supervised or-
thogonal discriminant analysis.

In this paper, we derive the TDO algorithm proposed by
Wang et al. [20, 21] for TROP for higher-order tensor data
on the basis of the Lagrange multipliers. Moreover, we
show that MPCA proposed by Lu et al. [10] recently is a
special case of tensor subspace learning (TSL) [21] which
is also included in the graph embedding framework [11].

The rest of this paper is organized as follows. Section 2
summarizes TROP and TDOP for TSL. Section 3 derives
TDO algorithm. Section 4 shows a relationship between
MPCA and TSL. Section 5 concludes this paper.

2. Trace Ratio Optimization Problem for Tensor Sub-
space Learning

Let G = {X,S} be an undirected graph with a set
of vertices X = {Xj,...,Xy} and a similarity matrix
S = [sum] € RMXM, where X, = [-xmil...iN] e Rivexdy
form = 1,...,M is an Nth-order tensor where x,;, i,
is the (iy,...,iy) element of X,. In graph embedding
[11], G is referred to as an intrinsic graph and another
graph H = {X,P}, where P = [ppw] € R™YM s also
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taken into account and referred to as a penalty graph. Let
U = {UD,...,U™)} be a set of matrices, where U" =
[u E”j)”] € R’"X’", J, < I, forn = 1,...,N. Then the
sequence of the n-mode products [24] of X, and U T =
(o U™ where U™ denotes the transpose of
U™, is denoted by Y,y = X X {UT} = X 1 UD" -+ xy
u™* 1251, where X,y x, UM = [ © Koy i U E"J)”]
RIV< X1 Inxluix-XIy jg the n-mode product [24] of X, and
U’ and Y,, = i ] € RIS whete ymg . is the
(Ji,...,Jn) element of Y,,. Then the trace ratio optimiza-
tion problem (TROP) for tensor subspace learning (TSL) is
expressed as follows:

Z Z 1Y = Yl prune
max L (1)
Z Z Y = Y- St

m=1m'=

Let f(U) be the objective funtion in (1). Then we have

! (xm _ x=m
Z Z Jo (i - m<n>)| P
1
fy = = @
! (=) (-n)
Z Z HU ! (Xm(’:t) X :ln)) | Smmt
m=1m'=1
tr (U(n)Tp(n) U(n))
= -, 3)
tr (U(ml NO U(n))
where X(’("; denotes the monde-n matricizing
[25] of X, x., (U'} = X, x udt o,
UrDE s U u™T 25], and PO =
(-n) (—n) (=n) (=n) —
Zm:l Zm’:l Pmm’ (Xm(n) - Xm (n)) (Xm(n) Xm (n)) ’ s§m =
M M (—n) (—n) (—n) (—n)
Zm:l Zm’ Smm’ (Xm(n) Xm (n)) (Xln(n) Xm (")) ’ Wang

et al. [20, 21] proposed an iterative algorithm for solv-
ing TROP by transforming it into a trace difference
optimization problem (TDOP) defined for each n by

max

nax (r [UW (P~ as®) U(”)] 4)

subject to the constraint (U ("))1 U™ =1, , where 1 is the
value of f(U) into which U obtained in the previous itera-
tion is substituted, and I, is the J,, X J,, identity matrix. The
procedure for renewing U™ forn = 1, ..., N is iterated un-
til the convergence. Wang et al. [20, 21] proved that f(U)
increases monotonically and the projection matrices U con-
verge. However, the mechanism of the transformation of
TROP into TDOP is not clear in their papers [20, 21]. In
the next section, we show a relationship between TROP and
TDOP on the basis of the Lagrange multipliers.

3. A Derivation of the Trace Difference Optimization
Algorithm

In the trace ratio optimization, i.e., the maximiza-
tion of (3), we may normalize the denominator as
tr[(U™)TS™WU™] = ¢ for a constant ¢ while the value of
f(U) keeps unchanged by multiplying tr[(U™)! P ]
by some appropriate scalar because the numerator and the
denominator multiplied by the same scalar result in the
same fraction. Therefore, we may reformulate TROP as
follows:

max tr (U(”)TP(”) U(”)) (5)

U

subj.to tr(U(")TS(") U(")) =c, (6)
u»'y® =15, (7)

The Lagrange function for this constrained optimization
problem is defined by

L(UP A" = u (U(”)TP(”)U(”))

-2 [tr (U(”)TS(”)U(")) - c]

—tr [A(ﬂ) (U(n)T U®™ — 1]")] , (8

where A is a Lagrange multiplier and A" € R’/ is a sym-
metric matrix of which the elements are also the Lagrange
multipliers. Then we have a necessary condition for opti-
mality as follows:

1 oL

E ST —_ Sy _

= pmym UMA® = 0, (9)

from which we have

!t ( P™ _ 1S (n)) U™ = A®. (10)
That is, the solutions of this equation are a diagonal ma-
trix A™ of which the diagonal elements are the largest J,,
eigenvalues of P™ — AS ™ and the corresponding eigenvec-
tors which are stacked in U™, which is also a solution to
TDOP (4) and satisfies the orthogonal constraint (7) auto-
matically.

We next consider another optimization problem, i.e., (5)
with (6) except (7). The Lagrange function for this con-
strained optimization problem is defined by

L(u™2) = u (U(”)TP(”) U(”))
-2 [tr(U(")TS mw U(”)) - c] . an
From dL/0U™ = 0, we have

POy = a5 (12)
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Multiplying both sides of this equation by U ™" from left
and taking the trace, we have

tr (U(n)TP(n) U(ﬂ))

- tr (U(n)TS (n)U(n))’ (13)

which is identical with f(U).

Consequently, we have derived two equations (10) and
(13) for TDOP from two constrained optimization prob-
lems, which are the reformulations of TROP, on the basis of
the Lagrange multipliers. Both of the two problems attempt
to maximize the same objective function tr (U " ptn U(”))
subject to different constraints. Although (13) is derived
from a relaxed version of TROP, i.e., from which the or-
thogonal constraint (7) is excepted in the relaxed TROP,
it is expected that the TDO algorithm will converge be-
cause U™ satisfying (7) is always substituted into (13) in
the TDO algorithm. In practice, Wang et al. [20, 21] proved
the convergency of the algorithm.

4. A Relationship between Tensor Subspace Learning
and Multilinear Principal Component Analysis

In this section, we show that multilinear principal com-
ponent analysis (MPCA) [10] is a special case of tensor
subspace learning (TSL) [21].

MPCA is formulated as the maximization of the total
scatter of tensors as follows:

mgx Yy (14)
subjto  UM'UMW=1,, n=1,...N, (I5)

where Wy is the total scatter defined by ¥y =

fozl ||ym - y”i where Y = % Z,A,f:l Y. On the other
hand, TSL can be reformulated as follows:

Hl[E]lX Z Z ”ym ym’”F Pmm (16)
m=1lm'=
SUbj.tO Z Z ”y ym’”% Smmr = C, (17)
m=lm'=
v»'u®=1,, n=1,...,N. (8)
Let E be the objective function in (16). Assume that
P =1, mm =1,...,M. (19)
Then we have
M M
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m=1m'=1
M M 5
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where Y, denotes the mode-n matricizing [25] of Y,,.
Hence, we have

E =2MVYy. (29)

That is, if (19) is assumed, then the maximization of E is
equivalent to that of Wy. For (17), assume that

Sput = Oy My’ = 1,..., M, (30)
where ¢ is the Kronecker delta. Then we have
Z Z WY = Yol S = 0. (31)

m=1m'=

Thus, the constraint (17) vanishes. Consequently, we may
conclude that, if (19) and (30) are assumed, then TSL is
reduced to MPCA.

5. Conclusion

In this paper, we have derived the trace difference op-
timization algorithm for the trace ratio optimization prob-
lem on the basis of the Lagrange multipliers. Moreover, we
have shown that multilinear principal component analysis
is a special case of tensor subspace learning.
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