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Abstract—We study the appearance of ILMs in a model
for the two-dimensional vibrations of an array consisting
of mono-crystal nanopillars. For these pillars, the elastic
properties and hence the dynamics depend on the pillar’s
shape and the orientation of the crystal axes. We show that
ILMs do form in the system, but their stability, defect pin-
ning and reaction to friction strongly depend on the crys-
tals properties, with the optimal dynamics only achieved in
a rather small region of the parameter space.

1. Introduction

The existence of the Intrinsic Localized Modes, or ILMs,
has been demonstrated in many coupled systems of oscil-
lators. These coherent oscillations were first discovered in
[1, 2]. ILMs have then been found in a wide variety of
structures, and there has been substantial interest in the the-
oretical analysis and practical applications of these struc-
tures [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. In general, most
of these works have concentrated on the analysis of the
oscillations being described by one variable that is per-
haps allowed to be complex. In particular case of ILM
in cantilever arrays, the one-dimensionality of vibrations
was enforced by designing the experiments with the can-
tilever thickness in the direction of vibration to be much
smaller than in the other direction. However, modern appli-
cation of ILMs to areas like sensing require miniaturization
of the nanopillar arrays to sub-micron levels [14]. Can-
tilever arrays of this size are fabricated using techniques
like nanoheteropitaxy [15], typically producing pillars with
similar transversal sizes, which thus do not typically pos-
sess a preferred direction for vibration. Driving these can-
tilever arrays at their resonant frequencies typically excites
vibration modes with deflection in both directions. The
goal of this paper is to analyze the appearance of ILMs in
the case when oscillations in both directions are allowed.
The two-dimensional motion of the pillars is similar to hav-
ing two coupled oscillator arrays, or an array of oscillators
with an internal degree of freedom. While there has been
considerable amount of work in this area already, see for
example [16, 17, 18], the difference between our work and
previous studies is in the structure of elastic coupling be-
tween two directions of oscillation.
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Figure 1: A cartoon of one dimensional cantilever array
that is able to undergo vibrations in two directions. For il-
lustration, we have also drawn a defected pillar that is used
to pin the ILM appearing from random initial condition on
the center pillar.

2. Setup of the Problem

For simplicity, in this paper we assume that each crys-
talline pillar in the array has a square cross-section, with
the flat sides being parallel to the axis of the crystal, and the
pillar material is such that crystalline axes are parallel to the
pillars’ sides and perpendicular to each other. These can-
tilever arrays, when driven by an external vibration source,
function as coupled oscillators. The material properties de-
termine the governing differential equations, which are a
generalization of the nonlinear equations for pillar vibra-
tions derived earlier. In order to reliably pin the ILM to the
desirable location (center pillar), we introduce a small de-
fect in that pillar’s properties, and make sure that the ILM
is attractive to the defect. The setup for the problem of in-
terest is shown on Fig. 1. In an experiment with sub-micron
nanopillar arrays, the forcing will most likely be distributed
among many pillars and artificial preparation of an ILM
will be experimentally unfeasible. Thus, in all our sim-
ulations, we have analyzed ILMs that spontaneously and
robustly appear from random initial conditions, under the
influence of distributed forcing.

The equations of motion for the pillars are formulated

2011 International Symposium on Nonlinear Theory and its Applications
NOLTA2011, Kobe, Japan, September 4-7, 2011

- 600 -



as follows. Let uk be the deflection of the k-th crystal pil-
lar from its neutral position. A typical equation, describ-
ing the evolution of one dimensional deflection in a one-
dimensional array is given by the equation

ük = − α1uk − α2
(
(uk − uk−1) + (uk − uk+1)

)
− β1u3

k − β2
(
(uk − uk−1)3 + (uk − uk+1)3) (1)

Here, α1, α2, β1, β2 are the constants that are determined by
the material properties of the pillars as well as the geome-
try. In order to describe the two-dimensional deflection of
the pillars, we introduce two components of the pillar de-
flection as uk = (uk,x, uk,y) that are not necessarily aligned
with the crystal axes. The linear components of the stress
can be computed as follows. Suppose for the given deflec-
tion, the linear part of deformation energy is given by the
quadratic form E2 = 1

2 uT
k Q2uk. For the purpose of this pa-

per, we choose a parameterization of the symmetric matrix
Q2 with three parameters α1,x, α1,y and α3 as follows:

E2 =
1
2

∑
k

α1,xu2
k,x + α1,yu2

k,y + α3
(
uk,x − uk,y

)2
. (2)

For the purposes of simplified analysis in this paper, we
only consider α1,x = α1,y = α1 which we treat as a param-
eter. Then, we study the behavior of the system as a func-
tion of parameters α1 and α3. Note that this is somewhat
different from the standard normalization, where one of the
natural frequencies would be normalized to 1. Also, it is
important to notice that the eigenvalues of the Hessian of
this matrix are strictly positive and distinct for α1 > 0 and
α3 > 0 so there are no degeneracies or unphysical values of
parameters in the system.

The nonlinear (cubic) term in the equation leads to the
fourth order term in energy, described by a fourth order
tensor Q4, i.e., E4 = Q4 · uk · uk · uk · uk. Even when
proper symmetries are included, the number of non-zero
components of Q lead to the exceedingly large number of
parameters. It is possible to estimate some of these compo-
nents analytically if the information about the orientation
of crystalline axes, pillar shape and nonlinear elasticity is
known. This will be done in further studies; for the purpose
of this work, we shall consider a simpler particular case of
the nonlinear coupling energy as

E4 =
1
4

∑
k

β2

(
u4

k,x − u4
k,y

)
+ β3

(
uk,x − uk,y

)4
. (3)

The total potential energy is then E = E2 + E4. For sym-
metry reasons, in the case considered here there is no cubic
term in the energy. However, note that a cubic term may
appear for a general arrangement of the crystal axes and
pillar facets, in the geometries breaking the reflection sym-
metry of the system. The appearance and role of a cubic
term in energy, leading to quadratic terms in the equations,
is very interesting and will be addressed in further studies.
This will lead to the necessity of investigation of a large

number of parameters, which we are not going to do here.
The corresponding equations of motion for two directions
are

¨uk,x = − α1,xuk,x − α2
(
(uk,x − uk−1,x) + (uk,x − uk+1,x)

)
− β1u3

k,x − β2
(
(uk,x − uk−1,x)3 + (uk,x − uk+1,x)3)

− α3(uk,x − uk,y) − β3(uk,x − uk,y)3

− γu̇k,x + σ sin(t) (4)
¨uk,y = − α1,yuk,y − α2

(
(uk,y − uk−1,y) + (uk,y − uk+1,y)

)
− β1u3

k,y − β2
(
(uk,y − uk−1,y)3 + (uk,y − uk+1,y)3)

− α3(uk,y − uk,x) − β3(uk,y − uk,x)3

− γu̇k,y + σ sin(t) (5)

This functional form of directional coupling allows a com-
prehensive study of ILM formation for two parameters, α3
and β3. In addition, we have added the dissipation in the
pillars, described by the term γu̇k, and the forcing term,
proportional to σ. The coupling parameters α3 and β3
can be estimated numerically, but their precise value for
a given experiment is generally unknown. Thus, they must
be treated as parameters in the problem.

3. Results

Here, we present the results for spontaneous formation
of ILMs in the system. The values of other parameters are
presented in the table below. For completeness, we present
the values of the other parameters used in simulations be-
low. While the typical value of α1 are around 1, we have
chosen to scan a large set of values in order to accommo-
date both cases when there is large discrepancy in natural
frequencies in two directions, and, alternatively, when the
natural frequencies of vibration are very close to each other.

Parameter Value
α1 0.0001 . . . 1
α3 0.0001 . . . 1
β1 0.01
β2 0.0001
β3 0, 0.001
γ 0.001
σ 0.01

The results of our simulations are presented on Fig. 2
and Fig. 3. We plot the ILM detectability, i.e., the energy
concentrated in an ILM divided by the average energy of
a pillar, which is non-zero due to the competition between
the forcing and dissipation. Each point on this plot is the re-
sult of simulation until t = 300, with the amplitude of ILM
computed from the last half of the time interval. The hor-
izontal and vertical axes are α3 and α1, respectively. Red
areas represent high values of detectability, and blue repre-
sent the low values. As we see, there are areas of parameter
where ILM appearance is very robust; however, these areas
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Figure 2: Phase diagram for ILM presence in 9-pillar crys-
tal array. Coupling parameters α1 and α3 are examined
for β3 = 0. Red denotes strong ILM formation whereas
blue indicates practically no spontaneously forming ILMs
present in the system. In order to scan large areas of pa-
rameters we use logarithmic scale for α1 and α3.

are relatively small. There is a highly intricate pattern de-
scribing high detectability of ILMs, and it is more typical to
observe the energy concentration in ILM to be rather small,
as is evident from our results. Thus, the preliminary work
presented here warrants more detailed studies of ILM for-
mation and detectability, and the necessity of improved de-
sign of nanopillar arrays for nanotechnology applications.

Acknowledgements

We have benefitted from fruitful discussions with Profs.
G. Balakrishnan, T. Hikihara, M. Kimura and M. Marconi.
This project received support from the Defense Threat Re-
duction Agency – Joint Science and Technology Office for
Chemical and Biological Defense (Grant no. HDTRA1-10-
1-007).

References

[1] A. J. Sievers and S. Takeno, “Intrinsic localized
modes in anharmonic crystals,” Phys. Rev. Lett.,
vol. 61, no. 8, pp. 970–973, Aug 1988.

[2] J. B. Page, “Asymptotic solutions for localized vi-
brational modes in strongly anharmonic periodic sys-
tems,” Phys. Rev. B, vol. 41, no. 11, pp. 7835–7838,
Apr 1990.

[3] P. G. Kevrekidis, A. R. Bishop, and K. O. Rasmussen,
“Twisted localized modes,” Phys. Rev. E, vol. 63,
no. 3, p. 036603, Feb 2001.

4 3.5 3 2.5 2 1.5 1 0.5 0
4

3.5

3

2.5

2

1.5

1

0.5

0

0.5

1

 3   (log10)

 1   
(lo

g 10
)

Relative Amplitude at Defect

 

 

0

10

20

30

40

50

60

70

Figure 3: Same phase diagram as in Figure 2 but computed
for β3 = 0.001

[4] P. G. Kevrekidis and V. V. Konotop, “Bright compact
breathers,” Phys. Rev. E, vol. 65, no. 6, p. 066614, Jun
2002.

[5] M. Sato, B. E. Hubbard, L. Q. English, A. J. Siev-
ers, B. Ilic, D. A. Czaplewski, and H. G. Craig-
head, “Study of intrinsic localized vibrational modes
in micromechanical oscillator arrays,” Chaos, vol. 13,
no. 2, p. 702, May 2003.

[6] M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic,
D. A. Czaplewski, and H. G. Craighead, “Observa-
tion of locked intrinsic localized vibrational modes in
a micromechanical oscillator array,” Phys. Rev. Lett.,
vol. 90, no. 4, p. 044102, Jan 2003.

[7] M. Sato and A. J. Sievers, “Direct observation of
the discrete character of intrinsic localized modes in
an antiferromagnet,” Nature, vol. 432, no. 7016, pp.
486–488, 11 2004.

[8] P. G. Kevrekidis, S. V. Dmitriev, S. Takeno, A. R.
Bishop, and E. C. Aifantis, “Rich example of geomet-
rically induced nonlinearity: From rotobreathers and
kinks to moving localized modes and resonant energy
transfer,” Phys. Rev. E, vol. 70, no. 6, p. 066627, Dec
2004.

[9] M. Sato, B. E. Hubbard, and A. J. Sievers, “Col-
loquium: Nonlinear energy localization and its ma-
nipulation in micromechanical oscillator arrays,” Rev.
Mod. Phys., vol. 78, no. 1, pp. 137–157, Jan 2006.

[10] V. Hizhnyakov, A. Shelkan, M. Klopov, A. J. Sievers,
and M. Haas, “Intrinsic localized modes and trapped
phonons in crystal lattices,” Journal of Physics: Con-
ference Series, vol. 92, no. 1, 2007.

- 602 -



[11] M. Kimura and T. Hikihara, “Capture and release
of traveling intrinsic localized mode in coupled can-
tilever array,” Chaos, vol. 19, no. 1, p. 13138, 2009.

[12] ——, “Coupled cantilever array with tunable on-
site nonlinearity and observation of localized oscil-
lations,” Physics Letters A, vol. 373, no. 14, pp. 1257
– 1260, 2009.

[13] M. Sato and A. Sievers, “Experimental and numerical
exploration of intrinsic localized modes in an atomic
lattice,” Journal of Biological Physics, vol. 35, pp.
57–72, 2009.

[14] M. Sato and A. J. Sievers, “Visualizing intrinsic local-
ized modes with a nonlinear micromechanical array,”
Low Temperature Physics, vol. 34, no. 7, pp. 543–
548, 2008.

[15] S. D. Hersee, X. Y. Sun, X. Wang, M. N. Fairchild,
J. Liang, and J. Xu, “Visualizing intrinsic localized
modes with a nonlinear micromechanical array,” J.
Appl. Phys., vol. 97, no. 12, p. 124308, 2005.

[16] B. A. Malomed, P. G. Kevrekidis, D. J. Frantzeskakis,
H. E. Nistazakis, and A. N. Yannacopoulos, “One-
and two-dimensional solitons in second-harmonic-
generating lattices,” Phys. Rev. E, vol. 65, no. 5, p.
056606, Apr 2002.

[17] R. B. Thakur, L. Q. English, and A. J. Sievers,
“Driven intrinsic localized modes in a coupled pen-
dulum array,” Journal of Physics D: Applied Physics,
vol. 41, no. 1, p. 015503, 2008.

[18] L. Q. English, F. Palmero, A. J. Sievers, P. G.
Kevrekidis, and D. H. Barnak, “Traveling and station-
ary intrinsic localized modes and their spatial control
in electrical lattices,” Phys. Rev. E, vol. 81, no. 4, p.
046605, Apr 2010.

- 603 -


	Navigation page
	Session at a Glance
	Technical Program

