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Abstract—In recent years, a new rhythm synchroniza-
tion has been reported. The generalization of the function
for receptors in the Dictyostelium by a nonlinear coupled
oscillators realizes the synchronization. After that, this
phenomena were investigated qualitatively by the averag-
ing method. However, a relationship between synchroniza-
tion modes and bifurcation phenomena has not been stud-
ied. In this paper, we feature van der Pol equation into
Nagano’s model, and investigate bifurcation phenomena of
the periodic solution and classify synchronization modes.
We show bifurcation diagrams and some typical attractors.

1. Introduction

A synchronization is a research field that has been stud-
ied for many years and many research results[1, 2, 3, 4, 5]
have been reported . Synchronization is observed every-
where, e.g., population luminescence of fireflies in nature
or the workings of the human body such as brain waves.
Then, in these years, new and very powerful synchroniza-
tion method has been found from the internal dynamics of
Dictyostelium[6, 7, 8, 9, 10]. Chemical substance called
cAMP is secreted into extracellular to communicate be-
tween cells when Dictyosteliums are aggregated. However,
aggregation of Dictyosteliums with each other is in time of
starvation, and Dictyostelium try to save as much as pos-
sible cAMP. Thus, biological sensors to adjust the concen-
tration of cAMP in Dictyostelium, called receptors, deter-
mine the concentration of extracellular cAMP. Receptors
stop production of cAMP when concentration of extracel-
lular is too high. Furthermore, receptors promote produc-
tion of cAMP when concentration of extracellular is too
low. In that way, receptors have been adjusted to a suitable
concentration of cAMP. This function of receptors causes
synchronization between cells. And, This synchronization
is formulated as follows[7][8]:

dx j

dt
= X j(x j, y j),

dy j

dt
= Y j(x j + γ j

∑
l

xl, y j), (1)

where j = 1, 2, . . . ,N is the number of coupled cells, P j is
product concentration of cell j and R j is receptor activity.
In addition, γ > 0 is a coupling factor. This formulation is
a nonlinear coupling between oscillators.

In this paper, we apply two van der Pol oscillators into X j

and Y j in Eq. (1), and investigate bifurcation phenomena.

As a result, we have got a bifurcation diagram explaining
synchronization modes of the system.

2. Bifurcation analysis

The coupled van der Pol oscillators are expressed by the
following equations. They are the similar as that has been
used in the paper [7],[8] and [11] .


dx j

dt
= y j = X j(x j, y j),

dy j

dt
= −ω2

j x j + ϵ(1 − x2
j )y j = Y j(x j, y j),

(2)

where ω j is the fundamental frequency of j-th oscillators,
ϵ > 0 is nonlinearity. The equations that two van der Pol
oscillators by nonlinear coupled are expressed by the fol-
lowing equations corresponding to Eq. (1).



dx1

dt
= y1,

dy1

dt
= −ω2

1{x1 + γ(x1 + x2)}
+ϵ[1 − {x1 + γ(x1 + x2)}2]y1,

dx2

dt
= y2,

dy2

dt
= −ω2

2{x2 + γ(x1 + x2)}
+ϵ[1 − {x2 + γ(x1 + x2)}2]y2.

(3)

From now, we will explain the procedure of bifurca-
tion analysis. Firstly, we consider an n-dimensional au-
tonomous system described as Eq. (4).

dx
dt
= f (x, λ), t ∈ R, x = (x1, x2, . . . , xn) ∈ Rn (4)

where λ is a parameter. The solution of Eq. 4 is described
as follows:

x(t) = φ(t,x0, λ), x(0) = x0 = φ(0,x0, λ) (5)

Assume that Eq. (4) has a limit cycle with the period L.
Then, the Poincaré section is defined as follows:

Π = {x ∈ Rn | q(x) = 0} , q : Rn → R, x 7→ q(x). (6)
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Figure 1: Bifurcation diagram of nonlinear coupled van der Pol oscillators

A condition of a periodic solution can be defined as fol-
lows:

φ(L,x0, λ) − x0 = 0. (7)

Second, we consider the condition that local bifurcations
occur. Since it occurs when the magnitude of multiplier
is unity, we obtain multiplier. Characteristic equation for
obtaining multiplier is as follows.

χ(µ) = det
(
∂φ

∂x0

∣∣∣∣∣
t=L
− µI

)
= 0 (8)

where µ is a multiplier. ∂φ/∂x0 of Eq. (8) is a Jacobian
matrix obtained by numerical integration of the variational
equation from the initial value. Bifurcations can be com-
puted by solving a two-point boundary value problem com-
posed by coalition Eq. (7) and Eq. (8). Local bifurcation
phenomena are tangent bifurcation, period-doubling bifur-
cation and Neimark-Sacker bifurcation.

3. Numerical

We will show results of bifurcation analysis. Figure 1 is
the bifurcation diagram of nonlinear coupled oscillators Eq.
(3). Solid lines are tangent bifurcations(G), dotted lines are
period-doubling bifurcations(I) and long dashed lines are
Neimark-Sacker bifurcation(NS). Figure 2 is the enlarged

diagram of Fig. 1. A typical fish hook structure is found in
Fig. 2.
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Figure 2: Fish hook structure

Figure 3–5 show attractors at (a)–(l) in Fig. 1. Figure 3
shows attractors at (a)–(d) which are ϵ = 1.0. It is consid-
ered that the attractor in Fig. 3(a) has a tendency toward the
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(a)γ = 1.0 (b)γ = 0.68

(c)γ = 0.5 (d)γ = 0.2

Figure 3: Attractors(ω1 = 0.9, ω2 = 1.6, ϵ = 1.0)

(e)γ = 1.0 (f)γ = 0.6

(g)γ = 0.35 (h)γ = 0.18

Figure 4: Attractors(ω1 = 0.9, ω2 = 1.6, ϵ = 2.0)

(i)γ = 1.0 (j)γ = 0.5

(k)γ = 0.22 (l)γ = 0.12

Figure 5: Attractors(ω1 = 0.9, ω2 = 1.6, ϵ = 3.0)

in-phase synchronization. If the parameter γ varies from
(a) to (d), attractor shows the change in the anti-phase syn-
chronization from the in-phase one. Figure 4 shows attrac-
tors at points(e)–(h) in Fig. 1. Changes in attractors of Fig.
4 are similar to that of Fig. 3. However, changes in attractor
begin with smaller values of ϵ than Fig. 3. Figure 5 shows
attractors at points(i)–(l) in Fig. 1. As with Fig. 4, changes
in attractors of Fig. 5 is similar to that of Fig. 3. However,
change is observed from the value of the smaller ϵ than
Fig. 4. It can be concluded from the above observations
that when the nonlinearity ϵ is increased, a coupling factor
γ is shown a tendency toward the in-phase synchroniza-
tion in smaller value. In order to estimate quantitatively the
tendency toward the synchronization mode, we study the
correlation coefficient of each others oscillators. The cor-
relation coefficient takes a real value and ranges from −1 to
1, and can quantized the relationship of two waves. There
is a positive and negative correlation if this value is close to
1 and −1, respectively. Also, the correlation is weak when
it is close to 0. The correlation coefficient is shown as fol-
lowing:

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1

(xi − x)2

√
n∑

i=1

(yi − y)2

, (9)

where x and y are arithmetic means of each x and y. In this
paper, we obtain a correlation coefficient of x1 and x2.

Figure 6 shows the correlation coefficient by varying γ.
Weak negative correlation is observed when γ is small,
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but strong positive correlation is observed when γ is large.
Thus, it can be said that attractor is changed to the in-phase
synchronization from the anti-phase synchronization when
γ is increased. In addition, if strong positive correlation is
appeared quickly if value of ϵ is increased.
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Figure 6: Correlation coefficient

4. Conclusion

We have investigated the bifurcation structure of two van
der Pol oscillators that is connected by a non-linear cou-
pling, and discussed a relationship the bifurcation and syn-
chronization modes. From these results, synchronization
modes of coupled oscillator are strongly depend on the cou-
pling factor γ. Additionally, it is confirmed that the param-
eter γ, where oscillators are changed to the in-phase syn-
chronization mode, becomes small value in the case that
the nonlinearity ϵ is employed as the large value.
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