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Abstract—This paper studies learning algorithm of the
digital spike maps. The map is equivalent to a simple
one-dimensional cellular automaton and can generate var-
ious digital spike-trains. In order to approximate a class
of spike-trains, we present a learning algorithm with self-
organizing function. Performing a basic numerical exper-
iment, we have clarified that the map can learn a typical
class of teacher signals. The results contribute to bridge
between spiking neural systems and digital dynamical sys-
tems.

1. Introduction

Spiking signals play important roles in a variety of
neural systems [1]-[9]. In biological/artificial neural sys-
tems, roughly speaking, spiking signals are generated by
integrate-and-fire dynamics. Analysis of them is basic to
understand information processing function in the brain [2]
[3]. Such neural systems can exhibit chaos, synchroniza-
tion and related rich bifurcation [4]-[8]. Analysis of these
phenomena is recognized as meaningful. The spiking sig-
nals are simple, low power and suitable for various en-
gineering applications including image segmentation [9],
A/D converters [10], UWB communication [11] [12] and
neural prosthesis [13].

Inspired by such neural systems, a variety of spiking
neurons have been presented [2] [7]. The digital spiking
neuron (DN) is one of them [14] [15]. The DN is con-
structed by coupling plural shift resisters and can exhibit
rich digital spike-trains. Adjusting the wiring pattern be-
tween plural shift registers, the DN can learn (approximate)
a class of teacher spiking signals.

This paper studies the digital spike map (DSM) and its
learning algorithm. The DSM can be regarded as a simple
class of cellular automata (CAs, [16] [17]) and can out-
put various spike-trains. The learning algorithm is simple
and includes a self-organizing function. Although there
exists various candidates of teacher spike signals, we use
the teacher signal constructed by the Izhikevich neuron
[2]. The Izhikevich neuron is a dynamical systems inspired
by biological spiking neuron. Performing a basic numeri-
cal experiment, we have clarified that the DSM can learn
typical teacher signals of the Izhikevich neuron. A ba-
sic method is used to measure distance among spike-trains
[14]. Please note the following for novelty and signifi-
cance.

1. The DSM is a simple model to describe digital spike-
trains and can be regarded as a variant of cellular automaton
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Figure 1: An example of the digital spike map (DSM) (a)
and corresponding the digital spike-train (DST) (b) where
ϕn = τ

′
n mod1.

(CA) with rich dynamics/applications [16] [17]. The DSM
can bridge between spiking neural systems and CA.

2. The DSM learning is simple, successive and self-
organizing. It is different from the DN learning that is
based on change of the wiring pattern and the genetic al-
gorithm [14].

2. Digital Spike Map

In this section, we define the DSM. The domain ID of the
DSM is a set of lattice points in the unit circle I = [0, 1),

ID ≡ {α1, α2, · · · , αM}, αi =
2i − 1
2M

(1)

where i = 1 ∼ M and M is the number of the lattice points.
The i-th lattice point αi is the center of the i-th subinterval:

Δi ≡
[
i − 1

M
,

i
M

)
(2)

The DSM is a discrete map from ID to itself:

ϕn+1 = Q(ϕn), ϕn ∈ ID (3)

where ϕn denotes the n-th digital spike phase where n is a
positive integer. For an initial value ϕ1, the DSM outputs a
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sequence of lattice points

{ϕ1, ϕ2, · · · , ϕN}.
This phase sequence corresponds to the spike-train of N
spike positions

{τ′1, τ′2, · · · , τ′N} = {ϕ1, ϕ2 + 1, · · · , ϕN + (N − 1)} (4)

where τ′k ∈ [k − 1, k). ϕk satisfies the condition ϕk = τ
′
k

mod1. The spike-train is described by

y(τ) =
{

1 for τ = τ′n
0 otherwise (5)

where n = 1 ∼ N. We refer to y(τ) as a digital spike-train
(DST) hereafter. Fig.1 shows an example of the DSM and
corresponding DST.

3. Learning algorithm

We introduce the learning algorithm. First, the teacher
signal is a sequence of digital spike phases {θ′1, · · · , θ′N} ,
θ′n ∈ ID, corresponding to a spike-train in Eq. (4).

In the learning a pair of the phases is necessary. We de-
fine the pairs are presented successively: let the first pair of
the digital spike phases (θ′1, θ

′
2) be presented at step s = 1

and let the s-th pairs (θ′s, θ′s+1 ) be presented at step s.

Step 1: Let s = 0. Q(a) is initialized by

Q(ai) =
2i − 1
2M
, i = 1 ∼ M. (6)

Step 2 (update of the teacher signal.): The s-th pair of the
teacher signal(θ′s, θ′s+1 ) is presented. Then the DSM of as is
updated as shown in Fig.2, black circles:

Q(as) = as+1. (7)

We refer to the black circle as ”winner”. This output is
permanent and can not change afterward. It causes a re-
striction for the teacher signals: for any phase ai ∈ ID, the
next phase ai+1 is given uniquely.

Step 3 (Update of set of lattice points.): We refer to the
winner before step s as ”past winner”. Let Nr (respec-
tively, Nl) be the sets of lattice points between the winner as

and the right-closest past winner ar (respectively, the left-
closest past winner al). For the lattice points,

Q(a) =
{

Fr(a) for a ∈ Nr

Fl(a) for a ∈ Nl
(8)

where Fr (respectively, Fl) implies the linear interpolation
between as and ar (respectively, al). This update is tempo-
ral and Q(a) can change if some teacher signal is applied to
the position of a.

Note that this interpolation relates to self-organizing and
the DSM can learn by insufficient teacher signals for s <

M. Examples are shown in Fig.2 (c), right side past winner
ar and left side past winner al are shown.

Step 4: Let s = s + 1. Go to Step 2 and repeat until the
maximum step limit s = N.

Figs.2 and 3 show shapes of the DSM and DST in the
learning process where the teacher signal is generated by
DSM in Fig 1. We can see that the DST tends to mimic the
teacher signal as the learning step s increases.

10

1

1+nϕ

nϕ

10

1

1+nϕ

nϕ10

1

1+nϕ

nϕ

10

1

1+nϕ

nϕ

)(a

)(b

)(c

)(d

lα

rα
winner

Figure 2: Learning process and the DSM for M = 16. The
black circles denote learned points ”winner” and grey cir-
cles denote interpolation points. (a) s=1, (b) s=2, (c) s=3,
ar and al denote the right side past winner and the left side
past winner, respectively. (d) s=15.

4. Numerical experiments

In order to evaluate the algorithm efficiency, we have
performed a basic numerical experiment. The teacher sig-
nal is constructed by the spike-train of the Izhikevich neu-
ron whose dynamics is described by

v̇ = 0.04v2 + 5v + 140 − u + I
u̇ = a(bv − u) (9)

with the auxiliary after-spike resetting

if v = 30 mV , then
v← c
u ← u + d (10)

where, v and u are dimensionless variables. After trial-and-
errors, we fix the dimensionless parameters a = 0.1, b =
0.2, c = −53, d = 4 and I = 10. Fig. 5 (a) shows an ex-
ample of spike-trains: this is between ”Fast Spiking (FS)”
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Figure 3: Learning process and the DST. The teacher signal
is from DSM for M=16. (a) teacher signal is from DSM in
Fig.1, (b) s=1, (c) s=2, (d) s=3, (e) s=15.

and ”Intrinsically Bursting (IB)”. The neuron fires and a
spike is generated if v � 30. Let pn be the n−th spike po-
sition, and let Δpn be the n−th inter-spike-interval (ISI):
Δpn = pn+1 − pn where n = 1 ∼ N − 1 . We use average of
IS I of the teacher signal: IS Iave for normalization of po-
sition. The teacher signal is normalized as τn = pn/IS Iave

and the phase is extracted θn = τn(mod1) where time-axis is
adjusted to satisfy τ1 ∈ [0, 1). In order to make the teacher
signal, we quantize the spike phase: a sequence of spike
phases: {θ1, · · · , θN} is converted to a digital spike phases:
{θ′1, · · · , θ′N}: if the n-th teacher spike phase θn is included
in the i-th subinterval Δi, the n-th teacher spike phase is
θ′n =

2i−1
2M . As mentioned in the algorithm, the s−th pair of

spike-phases is presented at learning step s:

(θ′s, θ
′
s+1), s = 1 ∼ N − 1 (11)

For simplicity, we consider a DST of 16 (= N) spikes for
0 < τ < N. Let ϕn denote the n-th spike phase of the DST
y(τ). The distance between the DST and the teacher signal
is measured by

S TD =
1
M

M∑
n=1

|θ′n − ϕn| (12)

Note that S TD=0 if θ′n = ϕn for all n.
Figs.4 and 5 show shapes of the DSM and DST in the

learning process where the teacher signal is generated by
the Izhikevich neuron. Fig.6 shows the approximation
characteristic. Note that, even if the leaning is not termi-
nated for s < 15, we have used the DSM in the learn-
ing process at step s to generate a DST of 16 spikes. We
have measured the distance between the teacher signal and
DST. In Fig.6, we can see that the closest distance be-
tween teacher signal and DST decreases as s increases. For
s > 9, the distance seems to converge to a small value:

s = 9 seems to be sufficient for the DSM to approximate
the teacher signal. Our algorithm is applicable to many
other systems including the BN [19].
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Figure 4: Learning process and the DSM for M = 16. The
teacher signal is constructed by the Izhikevich neuron for
a = 0.1, b = 0.2, c = −53, d = 4, I = 10. (a) s=0, (b) s=1,
(c) s=3, (d) s=7. (e) s=11, (f) s=15.

5. Conclusions

DSM and its basic learning algorithm are studied in this
paper. The learning algorithm is simple and includes a
self-organizing function. Performing basic numerical ex-
periments, we have confirmed the DSM can approximate a
typical class of the Izhikevich neuron even if the number of
spikes is not sufficient.

Future problems are many including
(1) detailed analysis of learning process,
(2) learning wider class of spike-trains,
(3) relation between DSM and CA,
(4) engineering application and
(5) building hardware.
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Figure 5: Learning process and the spike-trains. The
teacher signal is constructed by the Izhikevich neuron (a)
teacher signal is constructed by the Izhikevich neuron, (b)
analog spike position of the Izhikevich neuron (a), (c) dig-
ital teacher signal is based on (b), (d) s=3, the distance be-
tween DST and the teacher signal is S TD =0.357, (e) s=7,
S TD =0.177, (f) s=11, S TD =0.072, (g) s=15, S TD =0.021.
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