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Abstract– Localized oscillations in finite mass-spring
chains driven sinusoidally at one end with the other fixed
are studied numerically. The restoring force between
neighbouring masses is assumed to be given by a
piecewise-linear function of relative displacement and is
anti-symmetric with respect to equilibrium point. Linear
damping proportional to the velocity of the mass is taken
into account. The mass at one end is forced to be displaced
in the direction of the chains at a frequency slightly above
the cut-off frequency of the linearized system. As the
amplitude is large, localized oscillations are excited
intermittently at the driving end and propagated down the
chain at a constant speed.

1. Introduction

It is now known that the intrinsic localized modes
(ILMs) or the discrete breathers (DBs) are generic in
spatially periodic, discrete and nonlinear systems (see, for
example [1-5].) It is also known that the moving ILMs can
be excited numerically in a spatially semi-infinite system
driven at one end sinusoidally at a frequency in a linear
stopping band above the passing band [6-10].

In this paper, we consider finite mass-spring chains and
study numerically forced oscillations at one end. Here it is
assumed that all masses and springs are identical and the
spring constant changes for a displacement greater than a
threshold one. In other words, the restoring force is given

by a piecewise-linear function of displacement and anti-
symmetric with respect to equilibrium point (Fig. 1). This
model may be regarded as a simple and good
approximation to the Fermi-Pasta-Ulam model of beta
type [11]. The linear damping is included in every chain.
One end of the chains is forced to be displaced
longitudinally and sinusoidally, where the other is fixed.
We verify the existence of ILMs and study condition for
excitation of ILMs and their properties by solving initial
and boundary-value problems.

2. Numerical Analysis

Dynamical behaviors of the chains are described by N
equations of motion for the masses and two boundary
conditions. As is well known, there are N eignefrequecies
in the linearized system, which lie below the cut-off
frequency [11]. Letting the mass at one end be driven at a
frequency above the cut-off frequency, we solve the
equations of motions including the linear damping by the
Runge-Kutta method.

The driving frequency is taken to be slightly higher
than the cut-off one. It is found numerically that while the
driving amplitude is small, the oscillations are evanescent
and confined near the end (Fig. 2). As the driving

Figure 2: Spatial and temporal profile of the displacement
confined near the driver due to the evanescent oscillations.
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Figure 1: A piecewise linear force-displacement
relation.

- 416 -

2014 International Symposium on Nonlinear Theory and its Applications
NOLTA2014, Luzern, Switzerland, September 14-18, 2014



amplitude is larger and the displacement exceeds the
threshold one at which the spring constant changes, the
localized oscillations are excited intermittently at the
driving end and propagated down the system at a constant
speed (Fig. 3). When they hit the other end, they are
reflected and propagated back and forth in the system,
subject to nonlinear interactions between them (Figs. 4
and 5). The FFTs show that the frequencies of the
oscillations lie in the linear stopping band. In this respect,
the oscillations may be regarded as the moving ILMs.

3. Conclusions

Excitation and propagation of moving ILMs in the
forced oscillations of the finite mass-spring chains with
the restoring force which is a piecewise-linear function of
the displacement have been examined numerically. No
ILMs are generated if the displacement of the mass next to
the driving end is smaller than the threshold one. In this
respect, the present model is different from the FPU-
model, but it may be interesting to compare the ILMs in
both cases and find differences, if any.
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Figure 3: Spatial and temporal profile of the
displacement in the mobile ILMs where localized
oscillations are excited at the driver and are propagated
down the system and reflected at the fixed end, subject
to interactions each other.

Figure 4: Reflection of the localized oscillations at the
fixed end (blowup of Fig. 3).

Figure 5: Interaction between two localized
oscillations (blowup of Fig. 3).
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