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   Abstract— The residue number system (RNS) is a 
carry-free number system which can support high-speed 
and parallel arithmetic. One of the major issues in 
efficient design of RNS systems is the residue to weighted 
conversion which is an important issue concerning the 
utilization of RNS numbers in digital signal processing 
(DSP) applications. We present here an efficient design of 
residue to weighted converter for the newly introduced 
quinary moduli set {5n – 2, 5n – 1, 5n }, based on mixed-
radix conversion (MRC) algorithm. The proposed residue 
to weighted converter is adder-based and memory-less 
which can result in high-performance hardware. The 
proposed residue to weighted converter has better 
performance and also eliminates the use of multiplier, 
compared to the last work [10]. 
 

1. Introduction 

  The usage of Residue Number System (RNS) in Digital 
Signal Processing (DSP) applications has received 
considerable attention due to its attractive carry-free 
property which yields arithmetic processors that are 
inherently parallel, modular and fault isolating [1],[2],[3]. 
For successful application of RNS, data conversion must 
be very fast so that the conversion overhead doesn’t 
nullify the RNS advantages [3]. The residue number 
system (RNS) is a non-weighted number system which 
speeds up arithmetic operations by dividing them into 
smaller parallel operations. Since the arithmetic 
operations in each moduli are independent of the others, 
there is no carry propagation among them and so RNS 
leads to carry-free addition, multiplication and borrow-
free subtraction [4]. The RNS is mostly used in encryption 
and decryption techniques for its advantages in the 
computation process.  One of the major issues in efficient 
design of RNS systems is the residue to weighted 
conversion. The algorithms of residue to weighted 
conversion are mainly based on chinese remainder 
theorem (CRT), mixed-radix conversion (MRC) [4] and 
new chinese remainder theorems (New CRTs) [5]. In 
addition to these, novel conversion algorithms [6] which 
are designed for some special moduli sets have been 
proposed.  Multiple-valued logic (MVL) has been 
proposed as a means for reducing the power, improving 
the speed, and increasing the packing density of VLSI 
circuits [7]. In MVL, the number of discrete signal values 

or logic states extends beyond two. Arithmetic units 
implemented with MVL achieve more efficient use of 
silicon resource and circuit interconnections [8]. There is 
a clear mathematical attraction of using multiple-valued 
number representation in RNS. The modular arithmetic 
that is inherent in MVL can be match with modular 
arithmetic needed in RNS. The first MVL-RNS system 
was introduced by Soderstrand [9] to design a high speed 
Finite Impulse Filter (FIR). The residue to weighted 
converter proposed in [9] is based on chinese remainder 
theorem (CRT) and implemented with read-only 
memories (ROM's). This converter is practical to 
implement small and medium RNS dynamic ranges and it 
is not appropriate for large dynamic ranges. This paper 
develops a two-level MRC algorithm for designing an 
efficient residue to weighted converter for the moduli set 
{5n – 2, 5n – 1, 5n}. The proposed hardware architecture 
for residue to weighted converter has better performance 
in terms of area and delay since it is multiplier-free and 
memory-less in comparison with the residue to weighted 
converter proposed in [10].  
 

2. Background 

A residue number system is defined in terms of a 
relatively-prime moduli set   {P1, P2, …, Pn} that is 
greater common divisor GCD (Pi, Pj)= 1 for i ≠ j and i, j = 
1,2,...,n . A weighted number X can be represented as X = 
(x1,x2, … ,xn), where 

 
xi = X mod Pi = ⏐X⏐Pi , 0 ≤ xi < Pi                                  (1) 
 
Such a representation is unique for any integer X in the 
range [0, M-1], where  M=P1P2…Pn is the dynamic range 
of the moduli set {P1,P2, …,Pn} [10]. 
 
Then, the equivalent representation of X=32 is (x1, x2, 
x3) = (2, 2, 4).  Addition, subtraction and multiplication 
on residues can be performed in parallel without any carry 
propagation among the residue digits. Hence, by 
converting the arithmetic of large numbers to a set of the 
parallel arithmetic of smaller numbers, the RNS 
representation yields significant speed up. 
 
The algorithms of residue to weighted conversion are 
based mainly on Chinese remainder theorem (CRT) and 
mixed-radix conversion (MRC). 
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1) Chinese Remainder Theorem: by CRT, the number 
X is   calculated from residues by 
 

X = ⏐  ⎢xi Ni ⎢Pi  Mi⏐M                                  (2) 
where Mi = M / Pi  and Ni =| Mi

−1 |Pi is the multiplicative 
inverse of Mi modulo Pi. 
 

2) Mixed-Radix Conversion: the weighted number X 
can be computed by 

 
 X= an Pi + … + a3P2P1 + a2P1 + a1)                  (3) 
Where ais are called the mixed-radix coefficients and they 
can be obtained from the residues by 
 
an = ⏐(((xn – a1)⎢P1

-1⎢Pn – a2) ⎢P2
-1⎢Pn - … - an-1) ⎢P n-1

-

1⎢Pn⏐Pn                                                                                                                        (4) 
 
Where n >1 and a1 = x1. 
For a simple 2-moduli set {P1,P2}, the number X can be 
converted from its residue representation (x1,x2) by 
 
X = a1 + a2 P1 = x1 + P1⏐(x2 – x1) ⏐ P1

-1⏐P2⏐P2              (5) 
where | P1

-1 | P2 is the multiplicative inverse of P1 modulo 
P2. 
 

3. RNS with Moduli Set {5n – 2, 5n – 1, 5n } 

In [10], a ternary moduli set {3n – 2, 3n – 1, 3n} was 
introduced for RNS. Here we will introduce also the 
moduli set with quinary numbers set {5n – 2, 5n – 1, 5n}. 
This moduli set contains pair-wise relatively prime and 
balanced moduli which can offer large dynamic range and 
fast internal RNS processing. Because of using of high 
radix (r = 5), this RNS can be simply realized in quinary-
valued logic (QVL). Addition circuits for moduli set {5n – 
2, 5n – 1, 5n} can be obtained by using the same method of 
[11]. If we consider three numbers A, B and C as the 
residues in respect of the modulo m, then addition of these 
numbers in modulo m, can be performed as 

In other words, if the result is greater than or equal to 
the moduli, we add it to the complement of the moduli and 
ignore the carry out.  
 
  Example 1: If we perform the addition operation on the 
residues of the two number X(2,2,4) and Y(0,4,3), we 
found that  
2+0 = 2 because 2+0 < 3 (then the residue is 2) 
2+4≥5 then the residue is 2+4-5 = 1 
4+3≥7 then the residue is 4+3-7=0 
 The final residue of addition is (2,1,0) 
For performing the addition operation in the modulo 5n, 
we add up two numbers and as the carry out is a multiple 
of 5n, we simply ignore the carry out. The corresponding 
circuit is illustrated in Figure 1.  

 
Figure 1. Modulo 5n Quinary Adder 

 
  In modulo 5n–1 if the result is greater than or equal to the 
5n–1 then the result will be added to the complement of 
the modulo, i.e. 5n – (5n–1) =1. By using parallelism, the 
result and the same result plus one are generated 
simultaneously and by using a multiplexer, the correct 
value will be directed to the output. The corresponding 
circuit is presented in Figure 2. 

 
Figure 2. Modulo 5n-1 Quinary Adder 

 
  In modulo 5n–2, if the result of addition is greater than or 
equal to 5n–2 then it will be added to the complement of 
the modulo which is 5n–(5n–2) = 2. In an adder in the base 
5, carry in can be between zero and 4. Figure 3 shows the 
circuit of this modulo 5n–2 adder. 

 
Figure 3. Modulo 5n-2 Quinary Adder 

  
 We propose a two-level conversion algorithm for the 
residue to weighted conversion of the moduli set {5n – 2, 
5n – 1, 5n}. In the first level we use a MRC block for 
combining the two residues. The second level consists of 
another MRC block combining the result of the first level 
with the third residue. Figure 4. shows the block diagram 
of the proposed residue to weighted converter. 

A + B + C < m  ⇒ A + B + C 
A + B + C ≥ m  ⇒ A + B + C – m                                         (6) 
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Figure 4. Block diagram of the proposed converter 

 
 The following propositions are needed for the derivation 
of our algorithm. 
 
  Proposition 1: the multiplicative inverse of 5n–2 modulo 
5n is k0 = (5n–1) / 2. 
Proof: : it is clear that │5n -2 │5

n = − 2 ,  so 
⏐k0 × (5n – 2)⏐5 

n =⏐((5 n -1) /2) × (5 n -2)⏐5 
n  

=⏐-1/2 × -2⏐5 
n = 1                     (7) 

 
 Proposition 2: the multiplicative inverse of 5n (5n –2) 
modulo 5n –1 is k1= –1. 
Proof: 
 Since ⏐5 n⏐5 

n
 -1= 1 and ⏐5 n-2⏐5

 n -1= -1, we have 
⏐k1 ×5n ×(5n – 2) ⏐5 

n
-1 = ⏐-1 ×5n ×(5n – 2) ⏐5

 n
-1             (8) 

= ⏐-1 ×1 ×( – 1) ⏐5
 n

-1= 1 
  
 Consider the three-moduli set {5n – 2, 5n – 1, 5n} and let 
the corresponding residues of the integer X be (x1, x2, x3). 
onsider the moduli set {5n – 2, 5n} and Z = (x1, x3). Using 
the MRC conversion algorithm (5), Z can be calculated by 
 
Z = x1 + (5n-2) ⏐k0 (x3-x1)⏐5

n                                          (9) 
Where 
⏐k0 (5n-2)⏐5

n =1                                                             (10) 
 
Substituting the value of k0 from proposition (1) into (9) 
gives 
 
Z = x1 + (5n-2)⏐((5n-1)/2)× (x3-x1) ⏐5

n                           (11) 
The above equation can be rewritten as 
Z = x1 + (5n-2)T                                                            (12) 
 
Where 
T =⏐((5n-1)/2)× (x3-x1)⏐5

n                                              (13) 
 
We know that 
(5n-1) / 2= 2x (5o + 5 1 + … + 5(n-1))                               (14) 
 
Therefore (13) can be written as, 
T = ⏐2x( 5o + 5 1 + … + 5(n-1) )× (x3-x1) ⏐5

n     
= ⏐2 x (5o + 5 1 + … + 5(n-1))× V⏐5

n  

= ⏐2x (Vo + V 1 + … + V(n-1) )⏐5
n                                  (15) 

Where 

V = ⏐x3-x1⏐5
n                                                                 (16)                        

 
Vi s in Equation (15) can be obtained by the i digit left 
shifting of V. Since the final result of the addition of Vi 

temrs must be reduced in modulo 5n, we only need to 
consider the least significant n digits of Vi terms, and the 
other digits are ignored as they are multiplies of 5n. The 
equation (12) can be rewritten as 
 
Z = x1 + 5nT − 2T                                                           (17) 
 
Now, consider the moduli set {5n(5n–2), 5n–1}and 
X=(Z,x2). Using the derivation like before, X can be 
calculated by 
 
X = Z + 5 n (5 n – 2) ⏐k1(x2 – Z)⏐5

n
-1                                              (18) 

Where 
⏐ k1 × 5 n (5 n – 2)⏐5

n
-1= 1                                             (19) 

 
By substituting the value of k1 from proposition 2, we 
have 
 
X = Z + 5 n (5 n – 2)⏐Z- x2⏐5

n
-1                                      (20) 

So, (20) can be rewritten as 
X = Z + 5 2n D - 5 n 2D= (Z + 5 2n D) + 5 n (-D -D)        (21) 
 
Where 
D= ⏐Z- x2⏐5

n
-1                                                                                                 (22) 

 
Since Z is a 2n-digit number, we can write 
D= ⏐Z15n + Z0 - x2⏐5

n
-1= ⏐Z1+ Z0 - x2⏐5

n
-1                   (23) 

 
Where Z1 and Z0 have digit level representation as 
 
Z1 = (z2n-1 … zn+1 zn)                                                      (24) 
Z0 = (zn-1 … z1z0)                                                           (25) 
 
  Example 2: Given the moduli set {5n– 2, 5n – 1, 5n} 
where n=2. The residue number (1,4,2) converted into its 
equivalent weighted number as follows: For n=2 the 
moduli set is {23,24,25}. So, by substituting values in 
(11) and (20) we have 
Z = 1 + 23⏐12 ×1⏐25 = 277, X = 277 + 25×23⏐277 - 4⏐24 
= 5452 
To verify the result, we have 
x1 = ⏐5452⏐23 = 1, x2 = ⏐5452⏐24 = 4, x3 = ⏐5452⏐25 = 2 
Therefore, the weighted number 5452 has RNS 
representation as (1,4,2) in the RNS with moduli set 
{23,24,25}. 
 

4. Hardware Implementation 
  The MRC block of the first level are represented by 
equations (15)–(17) whereas equations (21) and (23) 
represent the MRC block of the second level. Details on 
the first-level and second-level are as follow. 
  1) The First Level: Equation (16) can be calculated by a 
regular n-digit quinary adder. Then, (15) is implemented 
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by an n-digit quinary multi-operand adder which is 
consists of a n-digit quinary carry save adder (CSA) tree 
followed by a regular n-digit quinary adder. Finally, (17) 
can be calculated by a 2n-digit regular quinary adder. It 
should be noted that since x1 is an n-digit number, no extra 
hardware is needed for computation of x1+5nT. The 
desired result can be obtained by concatenating x1 with T. 
Figure 5(a) shows the hardware implementation of the 
first level of the residue to weighted converter. 
  2) The Second Level: Equation (23) can be performed by 
an n-digit modulo (5n–1) quinary adder which is shown in 
Fig. 2. Calculation of equation (21) relies on an n-digit 
quinary adder followed by a 5n-digit regular quinary adder.  
Like before, since Z is a 2n-digit number, no extra 
hardware is needed for computation of Z+52nD. Figure 
5(b) shows the hardware implementation of the second 
level of the residue to weighted converter.  
  As shown in Figure 5(a) and (b), the proposed residue to 
weighted converter for the moduli set {5n – 2, 5n – 1, 5n} 
is multiplier-free and consists of quinary adders. 

 
(a)                                                 (b) 

                                      
Figure 5. Hardware architecture of the first level (a) and 

the second level (b) of the converter 

5. Results 

The residue to weighted converter for the moduli set {3n – 
2, 3n – 1, 3n} which is presented in [10], is based on direct 
implementation of the CRT algorithm and requires n-digit 
ternary multipliers and a modulo (3n – 2) (3n – 1) (3n) 
ternary adder for final reduction. So, as a result, the 
converter of [10] achieve long conversion delay and high 
hardware cost. But the larger modulo adder used in our 
converter is a modulo (5n–1) adder and also the proposed 
design eliminates the use of multiplier. Therefore, the 
proposed residue to weighted converter has better 
performance than the residue to weighted converter of 
[10] due to the reduction of delay and hardware cost for 
more than 100% for the same converted number.  For 
larger moduli set than {5n – 2, 5n – 1, 5n}, the same 
procedures will be followed to conclude the conversion 
method but with some differences in the equation of Z. 
The proposed hardware that can implement this 
conversion method is FPGA (field programmable gate 
array) 

6. Conclusion 

In this chapter an efficient design of the residue to 
weighted converter for the moduli set {5n – 2, 5n – 1, 5n} 
is presented. The proposed hardware implementation of 
the residue to weighted converter is multiplier-free and 
memory-less, which can be efficiently implemented in 
VLSI. In comparison with the last residue to weighted 
converter for the moduli set {3n – 2, 3n – 1, 3n}, the 
proposed design has better performance especially that 
quinary is easier than other systems for conversion into 
decimal (decimal is multiplier of quinary). 
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