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Abstract—This study deals with a propagating wave
observed in a bistable oscillator array, consisting of an
LC resonator and a nonlinear conductance. The voltage-
current characteristic of the nonlinear conductance is de-
scribed by a fifth-order polynomial function, and this char-
acteristic curve plays a role in the observation of prop-
agating waves. This study performs an examination for
the circuit implementation of the coupled bistable oscilla-
tors. By using a circuit simulator, we assume two different
nonlinear conductances, and the influence on dynamics of
the propagating waves are investigated. Furthermore, the
simulated characteristics are compared with the numerical
results. In addition, we report experimental observations
of the several propagating waves.

1. Introduction

Intrinsic localized modes (ILMs) in a nonlinear lattice
system has attracted intensive research interest in recent
years [1, 2]. The ILMs are investigated in various lattice
systems numerically and experimentally. The nonlinear
phenomena is assumed to have a wide field of application,
one of which is measuring field using micro-mechanical
cantilever array [2].

It has been known that complex propagating waves,
where a spatio-temporally localized excitation propagates
in one direction with constant speed, emerge in a coupled
bistable oscillator system [3, 4]. The individual oscilla-
tor is a simple circuit, which consists of one inductor, one
capacitor, and one nonlinear conductance. These prop-
agating waves have been numerically investigated in de-
tail, especially with regard to their initiating mechanisms.
In addition, the laboratory experiment is also possible,
which allows us to observe propagating waves and com-
pare them with numerical results using standard electrical
instruments and off-the-shelf components [5]. However,
some of the numerically obtained propagating waves have
not been observed so far.

Addressing the subject, this study is aimed to perform
an examination for the circuit implementation of the cou-
pled bistable oscillators. By using the circuit simulator LT-
SPICE, we assume two different nonlinear conductances,
and the influence on dynamics of the propagating waves
are investigated. Furthermore, the simulated characteris-
tics are compared with the numerical results. In addition,

we report experimental observations of the several propa-
gating waves.

2. Circuit setup

Figure 1(a) shows a schematic circuit diagram of a sim-
ple oscillator that is composed of one inductor (L), one
capacitor (C), and one nonlinear conductance (NC). We
assume that the voltage–current (v–iNC) characteristics of
the NC are given by the fifth-order polynomial

iNC = g1v − g3v3 + g5v5, g1, g3, g5 > 0. (1)

The NC operates as a passive resistor when a low voltage
is applied to the oscillator. This results in a no-oscillation
state (a stable focus). In contrast, when a high initial volt-
age is applied to C, the NC can produce a limit cycle oscil-
lation. Because this oscillator has two steady-state: a sta-
ble focus and a limit cycle, the oscillator is called bistable
oscillator.

In this paper, we assume that the six bistable oscillators
are connected with an inductor (L0), as shown in Fig. 1(b).
The circuit equation of Fig. 1(b) is written as
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dt2 +
g1

C

(
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k = 1, 2, · · · 6 (v0 = v6, v7 = v1).

(2)

Substituting

t = τ/
√

(1/LC) + (1/L0C), vk =
4
√

g1/5g5 xk,

ε ≡ g1/
√

(C/L) + (C/L0), α ≡ L/(L + L0),

β ≡ 3g3/
√

5g1g5, (· = d/dτ),

(3)

into Eq. (2) yields the following normalized equation:

ẋk = yk,
ẏk = −ε(1− βx2

k + x4
k)yk

−(1− α)xk + α(xk−1 − 2xk + xk+1).
(4)

The parameter ε (> 0) indicates the degree of nonlinear-
ity, whereas α (0 5 α 5 1) is the coupling factor. The
parameter β determines the amplitude of oscillation.
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(a) Individual oscil-
lator.

(b) Circuit diagram.

Figure 1: Six-coupled bistable oscillators in a ring.
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Figure 2: Two different characteristic curves for NC.
The green and blue solid curves are called “type1” and
“type2”, respectively.

3. Results

From a viewpoint of circuit design, the voltage–current
characteristic of NC plays a role in observing the prop-
agating waves. First, we assume two different NCs, and
investigate the influence on dynamics of the propagating
waves by using LTSPICE. When we adopt one of NCs in
the circuit experiment, it is shown that various propagating
waves coexist.

3.1. SPICE simulation

Figure 2 shows two different NCs, which are obtained
using LTSPICE. The two distinct characteristic curves are
realized by changing the resistor values and the number
of diodes in NC. The actual circuit for one of NCs is
shown in [5]. We call two distinct NCs (the green and the
blue curves) type1 and type2, respectively. In the follow-
ing SPICE simulations, we use the same initial voltages
such that v1 = 0.1V, v2 = 0.05 V, and the other vk = 0.
With both Type1 and type2, a propagating wave can be
observed in the SPICE simulations when the element val-
ues are set appropriately. Figure 3 shows the time series
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(b) Trajectory on the v1–v2 plane.

Figure 3: Propagating wave in SPICE simulation.

Table 1: Minimum and maximum values of L0 in terms of
C for type1 and type2.

type1 type2
C [nF] Ls

0 [mH] Ll
0 [mH] Ls

0 [mH] Ll
0 [mH]

8 4 14 5 9
10 4 17 4 13
12 4 18 4 15
14 4 20 4 17
16 3 21 4 18
18 3 22 4 19
20 3 24 4 20
22 3 25 4 21
24 3 27 4 22
26 3 27 4 23
28 3 27 4 25
30 3 28 4 26

of each voltage vk, k = 1, 2, . . . , 6, where the elements
L0 = 20 mH and C = 14 nF with Type1 are used. Ta-
ble 1 gives the values of L0 at which a propagating wave
emerges (Ll

0) and disappears (Ls
0) as a function of C 1. The

difference (Ll
0 − Ls

0) represents a existing regime of prop-
agating wave phenomena. Comparing both cases where
type1 and type2 are used, respectively, the existing regime
of type1 is wider than that of type2. For C > 30nF, the
value of Ll

0 becomes larger.
To investigate the initiating points of the propagating

waves in detail, we will compare the SPICE simulations
with the numerical results of Eq.(4). Following the lit-
eratures [3, 4], a propagating wave emerges near a lo-
cal (Pitch-fork; PF) bifurcation point of a limit cycle 2.

1Though there coexist several types of propagating waves, the type of
the solutions is not identified at present.

2More precisely, a propagating wave comes from a global bifurcation
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Figure 4: Two-parameter bifurcation diagram for three
values of β in Eq. (4), and the simulated lines calculated
by the values of Ll

0 and C in Table 1.
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Figure 5: Experimentally measured voltage-current char-
acteristics of the nonlinear conductance, and the fitting
curves of Eq. (4) for three values of β.

The exact parameter values of the PF bifurcation point
are numerically obtained using the procedure proposed by
Kawakami [6], and we draw the two-parameter bifurca-
tion diagram for three values of β using BUNKI. Note that
the parameter β in Eq.(4) determines the voltage–current
characteristic of NC. In addition, we calculate the param-
eter set (ε, α) using Eq. (3) from the values of C and Ll

0 in
Table 1, and the simulated results of type1 and type2 are
superimposed in the numerical results, as shown in Fig. 4.
The simulated line of type1 is consistent with the result for
β = 3.25. In contrast, the simulated line of type2 is away
from the numerical results for the three values of β.

3.2. Laboratory experiment

In this section, we concentrate on type1, and we inves-
tigate the propagating waves in the circuit experiments.

point, which is near the PF bifurcation point.
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(a) Time series.
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(b) Trajectory on the v1–v2 plane.
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(c) 3D plot.

Figure 6: Experimentally obtained propagating wave (C =
15nF and L0 = 14.3mH).

The experimentally measured curve of type1 and the char-
acteristic curve obtained from Eq.(4) for three values of β
are superimposed in Fig. 5. Though, at first glance, the
measured curve of type1 agrees with the fit for β = 3.3,
the simulated dynamics of the coupled oscillator system
is consistent with the case of β = 3.25 as discussed in
Sec.3.1. Therefore, it is considered that the voltage value
of a breading point of the characteristic curve plays an im-
portant role in the observation of the propagating waves.

Figure 6 shows the experimental results using C = 15nF
and L0 = 14.3mH, where the time series of the voltages
vk, the trajectory on the v1–v2 plane, and 3D plot of |vk |
are shown, respectively. It is clear that the quasi-periodic
waves, which propagate in the oscillator array with con-
stant speed, exists. When we assume β = 3.25, the corre-
sponding parameter values are ε = 0.342 and α = 0.123.
It is remarkable that the qualitatively similar result is ob-
served with the parameter set, as shown in Fig.7 (where
Initial conditions are x1 = −0.7, x2 = −0.1, x3 = 0.1, x4 =

−0.1, x5 = −1.0, x6 = 0.6, y1 = 0.2, y2 = −0.1, y3 =

0.0, y4 = −0.2, y5 = 0.3, and y6 = 1.8). In our previ-
ous work [5], we distinguished various propagating waves
by comparing the trajectories on the phase planes. Al-
though we failed to experimentally observe the propa-
gating wave in the literature, we succeed in observing
the propagating wave in the circuit experiment by using
the slightly different NC. Moreover, Fig. 8 shows an-
other propagating wave that is experimentally observed
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Figure 7: Numerical results corresponding to the prop-
agating wave in Fig. 6 (α = 0.123, β = 3.25, and ε =
0.342).

with the same parameter set. The associated numerical
results can also be obtained (with the initial conditions:
x1 = 2.0, x2 = 0.5, x3 = 0.1, x4 = 0.2, x5 = 0.9, x6 =

−2.2, y1 = 1.8, y2 = −0.3, y3 = y4 = 0.3, y5 = −2.3, and
y6 = 0.4), though no numerical results are presented due
to space limitations.

4. Conclusions

This study performed an examination for the circuit im-
plementation of the coupled bistable oscillators. By using
a circuit simulator, we assumeed two different nonlinear
conductances, and the influence on dynamics of the prop-
agating waves were investigated. Furthermore, the simu-
lated characteristics were compared with the numerical re-
sults. In addition, we reported experimental observations
of the several propagating waves.
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