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Abstract—In this paper, two semi-supervised clustering
methods are proposed, which are based on entropy regular-
ized fuzzy c-means algorithm. First, two fuzzy c-means
algorithms are introduced. The one is the standard one
and the other is the entropy regularized one. Second, two
semi-supervised standard fuzzy c-means algorithms are in-
troduced, which are derived from adding loss function of
memberships to the original optimization problem. Third,
two new optimization problems are proposed, in which one
is derived from adding new loss function of memberships
to the original optimization problem and the other is de-
rived from adding the loss function used in the latter semi-
supervised standard fuzzy c-means algorithm. Last, two
iterative algorithms are proposed by solving the optimiza-
tion problems.

1. Introduction

Fuzzy c-means (FCM) [1] is one of the well-known
fuzzy clusterings and many FCM variants have been pro-
posed after FCM. In these variants, FCM algorithm based
on the concept of regularization by entropy has been pro-
posed by one of the authors [2]. This algorithm is called
regularized entropy FCM (eFCM) and is discussed not only
for its usefulness but also for its mathematical relations
with other techniques.

In addition to the dissimilarity information used by
FCM, in many cases a small amount of knowledge is avail-
able concerning class labels for some items. Instead of
simply using this knowledge for the external validation of
the results of clustering, one can imagine letting it guide
the clustering process. Semi-supervised c-means cluster-
ing models attempt to this problem. Pedrycz [3] proposed
a method in which users may have a small set of labeled
data that can be used to supervise clustering of the remain-
ing data. This algorithms that use a finite design set of
labeled data to help clustering algorithms partition a finite
set of unlabeled data. Yamazaki et al. [4] and Yamashiro et
al. [5] also proposed another similar method.

In this paper, we propose two types of semi-supervised
fuzzy c-means algorithm. One feature is that the proposed
method is based on eFCM, where Pedrycz’s one is based
on sFCM. Another one is that the loss function of the pro-
posed method is KL-divergence between the membership
and the teacher value, where Pedrycz’s one is the power of
the membership and the teacher value.

2. Preliminaries

2.1. Notations

The data set x = {xi | xi ∈ R
p, i ∈ {1, . . . ,N}} is given.

The membership by which xi belongs to the j-th cluster is
denoted by ui, j (i ∈ {1, · · · ,N}, j ∈ {1, · · · ,C}) and the set

of ui, j is denoted by u ∈ RN×C called the partition matrix.

The constraint for u is

C
∑

j=1

ui, j = 1 (0 ≤ ui, j ≤ 1). (1)

The cluster center set is denoted by v = {v j | v j ∈ R
p, j ∈

{1, . . . ,C}}.

2.2. FCM

sFCM is the algorithm obtained by solving the following
optimization problem:

minimize
u,v

Jsfcm(u, v) subject to

C
∑

j=1

ui, j = 1. (2)

where

Jsfcm(u, v) =

N
∑

i=1

C
∑

j=1

um
i, j‖xi − v j‖

2. (3)

The parameter m is the fuzzifier satisfying m > 1. In this

paper, ‖ · ‖2 stands for square of Euclidean norm:

‖xi − v j‖
2
=

p
∑

k=1

(xi − v j)
2. (4)

The algorithm obtaining the optimal solutions u and v is
omitted by sake of papers.

eFCM is the algorithm obtained by solving the following
optimization problem:

minimize
u,v

Jefcm(u, v) subject to

C
∑

j=1

ui, j = 1 (5)

where

Jefcm(u, v) =

N
∑

i=1

C
∑

j=1

ui, j‖xi − v j‖
2

+ λ−1

N
∑

i=1

C
∑

j=1

ui, j log(ui, j). (6)

The second term of the right-hand side in Eq. (6) is for
regularization by entropy. The parameter λ is the fuzzifier
satisfying λ > 0. The algorithm obtaining the optimal so-
lutions u and v is omitted by sake of papers.

2.3. Semi-Supervised sFCM

The semi-supervised sFCM by Pedrycz (S-sFCMp) [3]
is the algorithm obtained by solving the following opti-
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mization problem:

minimize
u,v

Js−sfcmp(u, v) subject to

C
∑

j=1

ui, j = 1. (7)

where

Js−sfcmp(u, v) =

N
∑

i=1

C
∑

j=1

um
i, j‖xi − v j‖

2

+ α

N
∑

i=1

C
∑

j=1

(ui, j − biũi, j)
m‖xi − v j‖

2, (8)

where α > 0, the pointer bi = 1 if xi is labeled, and bi = 0
otherwise, ũi, j is the label for memberships ui, j. The algo-
rithm obtaining the optimal solutions u and v is omitted by
sake of papers.

The semi-supervised sFCM by Pedrycz (S-sFCMm) [4]
is the algorithm obtained by solving the following opti-
mization problem:

minimize
u,v

Js−sfcmm(u, v) subject to

C
∑

j=1

ui, j = 1. (9)

where

Js−sfcmm(u, v) =

N
∑

i=1

C
∑

j=1

um
i, j‖xi − v j‖

2

+ α

N
∑

i=1

C
∑

j=1

|ui, j − ũi, j|, (10)

where α > 0 and ũi, j is the label for memberships ui, j. The
algorithm obtaining the optimal solutions u and v is omitted
by sake of papers.

3. Semi-Supervised eFCM

3.1. Semi-Supervised eFCM by KL-divergence

In this section, we proposed a new semi-supervised en-
tropy regularized fuzzy c-means algorithms. This can be
obtained by solving a new optimization problem, in which
KL divergence between a membership and the correspond-
ing teacher value is added to the original optimization prob-
lem of eFCM.

First, we consider the following optimization problem:

minimize
u,v

Jefcm(u, v) +

N
∑

i=1

αi

C
∑

j=1

ui, j log

(

ui, j

ũi, j

)

(11)

subject to

C
∑

j=1

ui, j = 1. (12)

This corresponding Lagrange function is described as

Ls−efcmk(u, v) =Jefcm(u, v) +

N
∑

i=1

αi

C
∑

j=1

ui, j log

(

ui, j

ũi, j

)

+

N
∑

i=1

γi

















C
∑

j=1

ui, j − 1

















, (13)

where αi is a weight parameter for KL divergence between
a membership and the corresponding teacher value and

γ = (γ1, · · · , γN)T is Karush-Kuhn-Tucker vector. Karush-
Kuhn-Tucker conditions are described as below:

∂Ls−efcmk

∂ui, j

= 0, (14)

∂Ls−efcmk

∂γi

= 0, (15)

∂Ls−efcmk

∂v j

= 0. (16)

KKT condition (14) implies that

di, j + λ
−1(log(ui, j) + 1) + αi log

(

ui, j

ũi, j

)

+ γi = 0, (17)

from which we have

ui, j = exp

















−di, j + αi log
(

ũi, j

)

λ−1
+ αi

















exp

(

−λ−1 − γi

λ−1
+ αi

)

. (18)

From this form and KKT condition (15), we have

exp

(

−λ−1 − γi

λ−1
+ αi

)

=

1

C
∑

k=1

exp

(

−di, j + αi log(ũi, j

λ−1
+ αi

)

. (19)

Therefore we have the the optimal solution of ui, j as

ui, j =

exp

(

−λdi, j + αiλ log(ũi, j)

1 + λαi

)

C
∑

k=1

exp

(

−λdi,k + αiλ log(ũi,k)

1 + λαi

)

. (20)

If the weight parameter of KL-divergence αi is equal to
zero, the optimal membership value coincides with the one
for eFCM.

From KKT condition (16), we have the optimal solution
of cluster centers v j as

v j =















N
∑

i=1

ui, j















−1 N
∑

i=1

ui, jxi. (21)

From the above discussion, we propose a new semi-
supervised entropy regularized fuzzy c-means algorithms
by KL-divergence as below:

Algorithm 1

Step 1 Give the number of cluster C, the teacher val-
ues of membership ũi, j, the weight parameter of KL-
divergence between the unknown membership ui, j and
the teacher value of membership ũi, j and the fuzzifier
parameter λ. Set the initial cluster centers v.

Step 2 Calculate u by Eq. (20).

Step 3 Calculate v by Eq. (21).

Step 4 Check the stopping criterion for (u, v). If the crite-
rion is not satisfied, go back to Step 2.
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3.2. Semi-Supervised eFCM by Manhattan Loss Func-
tion

In this section, we propose another new semi-supervised
entropy regularized fuzzy c-means algorithms. This can be
obtained by solving a new optimization problem, in which
a loss function of Manhattan distance between a member-
ship and the corresponding teacher value is added to the
original optimization problem of eFCM.

First, we consider the following optimization problem:

minimize
u,v

Jefcm(u, v) +

N
∑

i=1

βi

C
∑

j=1

|ui, j − ũi, j| (22)

subject to

C
∑

j=1

ui, j = 1. (23)

This corresponding Lagrange function is described as

Ls−efcmm(u, v) =Jefcm(u, v) +

N
∑

i=1

βi

C
∑

j=1

|ui, j − ũi, j|

+

N
∑

i=1

γi

















C
∑

j=1

ui, j − 1

















, (24)

where βi is a weight parameter for the Manhattan dis-
tance between a membership and the corresponding teacher

value, and γ = (γ1, · · · , γN)T is Karush-Kuhn-Tucker vec-
tor. Karush-Kuhn-Tucker conditions are described as be-
low:

∂Ls−efcmm

∂ui, j

=0, (ui, j , ũi, j), (25)

ui, j =ũi, j, lim
ui, j−ũi, j→−0

∂Ls−efcmm(u)

∂ui, j

≤ 0 and

lim
ui, j−ũi, j→+0

∂Ls−efcmm(u)

∂ui, j

≥ 0, (26)

∂Ls−efcmm

∂γi

=0, (27)

∂Ls−efcmm

∂v j

=0. (28)

From KKT condition (28), we have the optimal solution
of cluster centers v j as Eq. (21). From KKT condition (25)
and (26), we have

ui, j = exp
(

−λ(di, j + γi + βi) − 1
)

, (ui, j > ũi, j) (29)

ui, j =ũi, j,

















di, j + λ
−1(1 + log(ui, j)) + βi + γi ≥ 0

and
di, j + λ

−1(1 + log(ui, j)) − βi + γi ≤ 0

















,

(30)

ui, j = exp
(

−λ(di, j + γi − βi) − 1
)

, (0 < ui, j < ũi, j), (31)

which we reformulate by cases of γi into

ui, j = exp(−λ(di, j + γi + βi) − 1),

(γi < −di, j − λ
−1(1 + log(ũi, j)) − βi) (32)

ui, j =ũi, j,

(−di, j − λ
−1(1 + log(ũi, j)) − βi ≤

γi ≤ −di, j − λ
−1(1 + log(ũi, j)) + βi), (33)

ui, j = exp(−λ(di, j + γi − βi) − 1),

(−di, j − λ
−1(1 + log(ũi, j)) + βi < γi). (34)

Since ui, j is decreasing for γi and satisfies

lim
γi→∞

ui, j(γi) = 0, (35)

lim
γi→−∞

ui, j(γi)→ ∞, (36)

there exists the unique γi such that the condition (27) sat-
isfies, which implies that we have the unique optimal so-
lution ui, j of the optimization problem (22) and (23). The
following algorithm obtains such ui, j.

Algorithm 2

Step 1. Let G be the set of (−di, j − λ
−1(1 + log(ũi, j)) +

βi,+, j) and (−di, j−λ
−1(1+ log(ũi, j))−βi,−, j), where

the first component is the values of γi at which ui, j(γi)
is not differentiable, the second one is the signs be-
fore the corresponding βi, and the last one is the clus-
ter index j of ui, j. Sort the element of G with the in-
creasing order of the first component. Set t = 1. Let
K1 = {1, · · · ,C}, K2 = and K3 = be the set of cluster
indices.

Step 2. Calculate

exp(−λ(γ̂i − βi) − 1)
∑

k∈K1

exp(−λdi,k)+

∑

k∈K2

ũi,k + exp(−λ(γ̂i + βi) − 1)
∑

k∈K3

exp(−λdi,k),

(37)

where γ̂i is the first component of Gt. If Eq. (37) is
equal to 1, end this algorithm with ui, j as below:

ui, j =















exp(−λ(di, j + γ̂i − βi) − 1) ( j ∈ K1),
ũi, j ( j ∈ K2),
exp(−λ(di, j + γ̂i + βi) − 1) ( j ∈ K3).

(38)

If Eq. (37) is greater than 1, end this algorithm with
ui, j as

ui, j =















Ui exp(−λ(di, j − βi)) ( j ∈ K1),
ũi, j ( j ∈ K2),
Ui exp(−λ(di, j + βi)) ( j ∈ K3),

(39)

by solving the following equation for γi as

exp(−λ(γ̂i − βi) − 1)
∑

k∈K1

exp(−λdi,k)+

∑

k∈K2

ũi,k + exp(−λ(γ̂i + βi) − 1)
∑

k∈K3

exp(−λdi,k) = 1,

(40)
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where

Ui =
1 −

∑

k∈K2
ũi,k

∑

k∈K1
exp(−λ(di,k − βi)) +

∑

k∈K3
exp(−λ(di,k + βi))

(41)

If Eq. (37) is less than 1 and the second component of
Gt is +, move the element whose third component is
j from K1 to K2. Otherwise, move the element whose
third component is j from K1 to K2.

Step 3. Set t← t + 1 and go back to Step 2..

From the above discussion, we propose a new semi-
supervised entropy regularized fuzzy c-means algorithms
by Manhattan loss function:

Algorithm 3

Step 1 Give the number of cluster C, the teacher val-
ues of membership ũi, j, the weight parameter of KL-
divergence between the unknown membership ui, j and
the teacher value of membership ũi, j and the fuzzifier
parameter λ. Set the initial cluster centers v.

Step 2 Calculate u by Algorithm 2.

Step 3 Calculate v by Eq. (21).

Step 4 Check the stopping criterion for (u, v). If the crite-
rion is not satisfied, go back to Step 2.

4. Constructing Dissimilarity Matrix, Kernel Gram
Matrix and Kernel Function for Must-link

In this section, we construct dissimilarity matrix d∗ ∈
R

n×n and kernel function K∗ : Rp × Rp → R affected
by must-link — two data have to be together in the same
cluster — in order to apply to fuzzy relational clustering
method and to kernel fuzzy clustering method, respectively.

The easiest idea of constructing dissimilarity matrix d∗

affected by must-link that xi and xĩ have to be together in
the same cluster, is replacing the corresponding element
di,ĩ by a certain small positive value. With such the dissim-
ilarity matrix d∗, fuzzy relational clustering algorithm will
produce a result.

If xi and xĩ have to be together in the same cluster, other
data close to xi and xĩ ( xi and other data close to xĩ ) also
should be together in the same cluster. Based on this idea,
we construct dissimilarity matrix as below. First, make the
graph whose i-th node is correspond to xi and whose edge

connecting i-th and ĩ-th nodes has the value di,ĩ. Second,

replace the value of (i, ĩ)-edge by a certain small nonnega-

tive value if (i, ĩ) is an element of must-link. Third, replace

the value of (i, ĩ)-edge by the minimum adding each edge

in (i, ĩ)-path, which can be achieved by dynamic program-

ming. Last, adopt the value of (i, ĩ)-edge as d∗
i,ĩ

. With such

the dissimilarity matrix d∗, fuzzy relational clustering al-
gorithm produce a result affected not only by must-link but
also by other data close to the data in must-link. From the
dissimilarity matrix d∗, we can construct kernel gram ma-
trix and apply to kernel fuzzy clustering methods. Kernel
gram matrix must be positive semi-definite. Another ma-
trix d∗∗ by diagonal shift or eigen-value shift of d∗ can be
kernel gram matrix.

In order to construct fuzzy classification function, we
need not only kernel gram matrix but also kernel function

affected by must-link. Such kernel function based on Gaus-
sian kernel can be obtained as below. First, insert a simple

Gaussian kernel K(x, y) = exp(−σ‖x−y‖2) to a list of func-
tions L and adopt the kernel function as the maximal of
L,

K(x̄, ȳ) = max
κ(x,y)∈L

κ(x̄, ȳ), (42)

which is corresponding to original dissimilarity matrix d.

Second, insert two functions exp(−σi,ĩ(‖x − xi‖
2
+ ‖xĩ −

y‖2 + d∗
i,ĩ

)) and exp(−σi,ĩ(‖x − xĩ‖
2
+ ‖xi − y‖2 + d∗

i,ĩ
)) to

L if (xi, xĩ) is an element of must-link, and adopt the ker-
nel function as the maximal of L. This updated kernel
function is corresponding to the second step in the previ-
ous paragraph and remark that K(xi, xĩ) = d∗

i,ĩ
. Third, with

d∗ obtained through the third step in the previous step, in-

sert two functions exp(−σi,ĩ(‖x − xi‖
2
+ ‖xĩ − y‖2 + d∗

i,ĩ
))

and exp(−σi,ĩ(‖x − xĩ‖
2
+ ‖xi − y‖2 + d∗

i,ĩ
)) to L and adopt

the kernel function as the maximal of L. In order for such
function to be kernel, the original function exp(−σ‖x−y‖2)

may be replaced by a exp(−σ‖x − y‖2) with a > 1, where
this replacement is corresponding to diagonal shift of d∗

i,ĩ
.

5. Conclusion

In this paper, we first proposed two new semi-supervised
clustering algorithms, in which one is derived from the op-
timization problem by adding KL-divergence between the
membership and the teacher value to the original one for
eFCM and in which the other is derived from the opti-
mization problem by adding Manhattan distance between
the membership and the teacher value to the original one
for eFCM. We also proposed how to construct dissimilarity
matrix, kernel gram matrix and kernel function affected by
must-link.
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