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Abstract – We apply sequential symbolic analysis to 
the first range difference (‘derivative’) of signal.  We 
encode it using two-elements alphabet - symbol ‘1’ when 
the signal is growing or remains unchanged and symbol ‘0’ 
when the signal is decreasing. After such symbolization 
sequences of the same symbol (‘1’ or ‘0’) give us 
information for how long periods the signal is monotonous 
(growing or decreasing) and  indexes characterizing 
distributions turn out to be good characteristics of the 
analyzed signal. 

 
 
1. Introduction 

 
There are many different techniques for symbolic time 

series analysis, based on conversion of the amplitude of 
measured signal into a few possible symbols, 
corresponding to chosen amplitude ranges [1-6]. The 
effect of such coarse-graining (partition of the data space) 
is such that large-scale feature are captured, while noise is 
reduced. The choice of the data space partition affects the 
characteristics of symbolic description of the data. From 
this point, the techniques start to differ, for example the 
alphabet i.e. the set of used symbols may be different. 
Two-symbols alphabet {0,1} is often used. The greater the 
alphabet the more details of the original signal may be 
captured but the tradeoff is diminished reduction of noise. 
For two-symbols alphabet the data median or data mean 
are often used as the threshold for data space partition, but 
in non-stationary signals mean and median often abruptly 
change. We apply sequential symbolic analysis to the first 
range difference (‘derivative’) of signal.  In this case  
value 0 is the natural threshold.  

 
2. Methods 
 

We calculate the first range difference of  time series  
x(i)  and we build series of symbols, s(i) (cf. [7]): 
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Symbol series is divided into K windows of width W 

symbols each. Sliding window technique is used for 
further analysis. If the shift of the window is smaller then 
the windows are overlap. We count monosequences Nx0 
(or Nx1) in consecutive windows; mono-sequence of 

length N (N = 1,…,W) is a homogeneous sequence 
containing only one type of symbol, ‘0’ or ‘1’. In such a 
way  we obtain the number of mono-sequences consisting 
of N  symbols ‘0’ in the k-th window, Lk{Nx0} (or, 
equivalently, the number Lk{Nx1}). We repeat this for all 
possible values of N.  

Using distribution of all detected monosequences in the 
k-th window, Lk{Nx0}, we calculate Shannon entropy[]: 
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Next we normalize entropy. 
 
                                                           (3) 
 
The entropy reaches maximum when all possible 

monosequences in the window have the same probability 
of occurrence  

 

                                   )1(log=max n
S −

nSM −1=

                           (4) 

 
where n is the maximum number of different, not repeated 
monsequences  in  the window.  

Finally, the monotony is defined as 
 
                                                                  (5) 

 
The monotony shows level of diversity of signal in 

single window and changeability of diversity in time 
(from window to window). In fact, diversity of intervals in 
signals is counted -- the intervals are monotonic parts of 
signals (amplitude is growing or amplitude is decreasing). 
The monotony is the measure of statistical repetition in 
the signal. It reaches minimum when the monosequences 
with same lengths do not repeat in the window. Monotony 
reaches maximum when the same monosequences (sinus 
signal) or a single monosequence (constant signal) fill up 
the whole window. 
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3. Results 
 
Even comparison of number of monosequences  like 

L{8x0} on a single EEG channel demonstrates differences 
between normal EEG and pathological EEG that can be 
seen by naked eye  (Fig.1  and   Fig.2) 

 
 

 
Fig. 1.  L{8x0}  calculated from a single-channel EEG 
for a normal case, for a case with weak ictal activity, 

and for a person with strong ictal activity 
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Fig.2. L{8x0} calculated from a single-channel sleep-EEG 
in a case of normal physiological sleep (upper curve)  
and in a case of a person suffering of insomnia (lower) 
 
 
Such differences between normal and pathological 

cases may be seen even much better when monotony of 
sleep-EEG is considered (Fig. 3).   

One can easily observed disturbances in 
quasiperiodicity of sleep. For deeper sleep stadiums, the 
values of monotony drop to level of average correlated 
noises. It means, that the brain in deeper sleep generates 
more various monosequences. This result is a 
consequences of the greater contribution of long 
monsequencies in deeper stages of sleep. The long 
monosequencies are more sensitive to noise so the brain 
`makes' more longer sequences. 

 
Fig.3. Monotony of sleep-EEG 
 

 
Monotony demonstrates also irregularities in sleep-

ECG (Fig. 4)  and in sleep-EMG (Fig. 5) 
 
 
 

 
 
Fig. 4. Monotony of sleep-ECG 
 

 

 
 
Fig. 5.  Monotony of sleep-EMG. 
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4. Conclusions 
 
Sequential symbolic analysis of the first range 

difference of biosignals, in particular the method that 
makes use of  a newly defined characteristic called 
monotony [7] are very promising  in  biomedical 
applications,  for example in screening for pathological 
conditions.  
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