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Abstract—In this paper, we propose two variants of
Fuzzyc-Means (FCM) clustering algorithms. Both mod-
els are extension of conventional FCM in which not only
squared Euclidian norm,L1 norm but alsop-norm to the
qth power are used as the dissimilarity. One is constructed
by using Newton method, and the other, only for the case
of p = 2, is constructed by using alternative optimization.

1. Introduction

Clustering is a technique of data classification without
external criterion. There are two methods in clustering.
One is hierarchical and the other is non-hierarchical. Fuzzy
c-means (FCM) is one of the most typical method of non-
hierarchical clustering. FCM classifies the data intoc
clusters by optimizing an objective function, wherec, the
number of clusters, is given in advance. Standard fuzzy
c-means (sFCM)[1][2] and entropy regularized fuzzyc-
means (eFCM)[3] are well-known methods among FCM
algorithms.

As the dissimilarity in FCM, squared Euclidian norm is
most commonly used, thanks to its easily implementable
alternative optimization solution. On the other hand,L1
norm based FCM also has been studied actively. About the
reason, Jajuga[4] pointed out that theL1 norm based FCM
is little affected on outliers, and Bobrowski et al.[5] con-
cluded thatL1 norm based FCM matches “boxy” data well,
and better accuracy than FCM can using squared Eucilidian
norm.

Bobrowski et al. treated not onlyL1 norm but alsoL∞
norm as the dissimilarity. Miyamoto et al.[6] has studied
not only L1 norm based sFCM but alsoL1 norm based
eFCM andL1 norm based mixture models.

But the most of previous works use squared Euclidian
norm,L1 norm andL∞ norm as the dissimilarity of FCM.
It has been hardly examined the algorithm, the numerical
result, and the effectiveness of FCM usingp-norms to the
q-th power as the dissimilarity. It is impossible to obtain
the cluster centerV analytically in that case, that is one of
the reason why thep-norm based FCM (nFCM) has not
been studied.

In this paper, we propose algorithms for nFCM which
is the generalization of the conventional FCM. In our new
algorithm,p-norms to theq-th power is used as the dissim-
ilarity, andV is obtained not analytically but numerically.

In the section 2, we prescribe our notation and explain
the conventional FCM. In the section 3, we propose an al-
gorithm for nFCM using Newton method. In the section
4, we propose another algorithm. It is available if we use
the Euclidian norm to theq-th power as the dissimilarity of
FCM. In the section 5, we show some numerical examples.
In the section 6, we summarize our conclusions.

2. Preliminaries

In this section, we define some notations which are data
for clustering, the membership by which the each data be-

longs to the each cluster, and the cluster prototypes of
FCM. Next, we show two types of objective function. At
the end of this section, we show the algorithm of conven-
tional FCM.

2.1. Data, Membership and Cluster Prototypes

Let the data setX = {xk ∈ Rs | k = 1, . . . , n} be given in
advance. We classifyX into c clustersG1, . . . ,Gc without
the external criterion (1< c < n). x j

k denotes thej-th com-
ponent ofxk, wherek = 1, . . . , n and j = 1, . . . , s. Namely,

xk = (x1
k, · · · , xs

k)
T . (1)

The membershipU ∈ Rn×c by whichxk belongs to thei-
th clusterGi is denoted byuki ∈ [0,1]. The prototype of the
clusterGi is denoted byvi ∈ Rs, and the cluster prototype
set is denoted byV ∈ Rcs. Namely,

V = (v1
1, v

2
1, · · · , vs

c)
T . (2)

2.2. Dissimilarity

We define the dissimilarity as follows:

Definition 1 (Dissimilarity) Let X be an arbitrary set．A
functiond : X × X → R is dissimilarity if d satisfies the
following for any elementsx1, x2 of X:
(a) d(x1, x2) ≥ d(x1, x1) = 0 ,
(b) d(x1, x2) = d(x2, x1) .

Any norms inRs always satisfy the property (a)，(b) of
the definition 1, hence we can use each norm as the dissim-
ilarity of FCM．

2.3. Objective Function

FCM is an optimized clustering to obtain the member-
shipU and the cluster centerV, which minimize the objec-
tive functionJ(U,V) under the constraintM f

M f =

{
(uki) : uki ∈ [0,1],

c∑

i=1

uki = 1 for all k

}
. (3)

The objective function of the standard regularized fuzzyc-
means (sFCM) is represented as follows:

JsFCM(U,V) =

n∑

k=1

c∑

i=1

(uki)
mdki (4)

wherem ∈ [1,∞). The objective function of the entropy
regularized fuzzyc-means (eFCM) is represented as fol-
lows:

JeFCM(U,V) =

n∑

k=1

c∑

i=1

ukidki + λ−1
n∑

k=1

c∑

i=1

uki loguki (5)
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whereλ > 0.
dki denotes the dissimilarity betweenxk andvi . We usu-

ally use the squared Euclidian norm as the dissimilarity.
Namely,

dki = ‖xk − vi‖22 =

s∑

j=1

(x j
k − v j

i )
2. (6)

In theL1-norm based FCM([4]-[6]), the followingL1 norm
is used as the dissimilarity:

dki = ‖xk − vi‖1 =

s∑

j=1

|x j
k − v j

i | . (7)

2.4. FCM alternative optimization algorithm

In this section, we show the conventional alternative op-
timization algorithm of FCM:

Algorithm 1 (FCM)
FCM1. Set the value of the cluster prototypeV〈0〉 and Let

K = 0．
FCM2. CalculateU 〈K+1〉 by

U 〈K+1〉 = arg

(
min
U∈M f

J(U,V〈K〉)

)
.

FCM3. CalculateV〈K+1〉 by

V〈K+1〉 = arg
(
min

V
J(U 〈K+1〉,V)

)
.

FCM4. Check the stopping criterion. If the criterion is not
satisfied, letK beK + 1 and go back to FCM2.

End of FCM.

We useJsFCM of (4) or JeFCM of (5) as the objective
functionJ in the above algorithm.

2.4.1. Update of the membershipU

JsFCM is a convex function according toU if m> 1. And
JeFCM is a convex function according toU if λ > 0.

Both JsFCM andJeFCM are convex functions with regard
to V if we use the squared Euclidian norm as the dissimilar-
ity. HenceU 〈K+1〉 in FCM2. can be expressed as the formula
of V〈K〉 explicitly via the Lagrange multiplier method.

Actually, in the case ofxk , v〈K〉i (i = 1, · · · , c) in JsFCM,

u〈K+1〉
ki =

[ (
1

d〈K〉ki

) 1
m−1

c∑

j=1

(
1

d〈K〉k j

) 1
m−1

]−1

, (8)

in the case ofxk = vi
〈K〉 for somei in JsFCM,

u〈K+1〉
ki = 1, u〈K+1〉

k j = 0 ( j , i) . (9)

With regard toJeFCM

u〈K+1〉
ki =

e−λd〈K〉ki

c∑

j=1

e−λd〈K〉k j

. (10)

2.4.2. Update of the cluster centerV

The objective functionJ(U,V) is a convex function ac-
cording toV if we use the squared Euclid norm as the dis-
similarity. Hence in order to obtainV〈K+1〉 in FCM3., solve
the following equation with regard toV:

∇VJ(U,V) = 0. (11)

In sFCM, we obtainV〈K+1〉 in FCM3. as follows:

v〈K+1〉
i =

n∑

k=1

(u〈K〉ki )
mxk

n∑

k=1

(u〈K〉ki )
m

. (12)

And in sFCM, we obtainV〈K+1〉 in FCM3. as follows:

v〈K+1〉
i =

n∑

k=1

u〈K〉ki xk

n∑

k=1

u〈K〉ki

. (13)

However, it is difficult to solve the equation (11) with
regard toV for any p,q. Equation (12), (13) can be solved
just because the dissimilarity is denoted by equation (6).

2.5. Fuzzy Classification Function

Fuzzy classification functions[7] are available in FCMs
which show how prototypical an arbitrary point in the data
space is to a cluster by extending the membershipU to the
whole space. Fuzzy classification function for sFCM with
respect to a brand-new datum ˜x ∈ Rs is defined as

Us
i (x̃) =

[ (
1
d̃i

) 1
m−1

c∑

j=1

(
1
d̃k

) 1
m−1

]−1

, (14)

and fuzzy classification function for eFCM with respect to
a brand-new datum ˜x ∈ Rs is defined as

Ue
i (x̃) =

e−λd̃i

c∑

j=1

e−λd̃ j

. (15)

In these equations,

d̃i = ‖x̃− vi‖22 (16)

in the case of squared Euclidian norm based sFCM, and

d̃i = ‖x̃− vi‖1 (17)

in the case ofL1norm based sFCM. Fuzzy classification
function is valid to investigate the features of FCM since
it clarify the classifying situation in whole space than only
memberships for finite number of data.
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3. Proposed Method I

In this section, we propose ap-norm based FCM
(nFCM) algorithm using Newton iteration. First we ex-
plain how to updateU,V if we use thep-norm to theq-th
power as the dissimilaritydki. Namely,

dki = ‖xk − vi‖qp =

( s∑

j=1

|x j
k − v j

i |p
)q/p

(18)

Next, we show the algorithm in whichV is obtained not
analytically but numerically.

3.1. Update of the membershipU

In nFCM, we can obtain optimizedU as the formula of
V〈K〉 explicitly as well as the discussion in the section 2.4.1.

In the case ofxk , v〈K〉i (i = 1, · · · , c) in JsFCM,

uki
〈K+1〉 =

[ (
1

‖xk−v〈K〉i ‖qp

) 1
m−1

c∑

j=1

(
1

‖xk−v〈K〉j ‖qp

) 1
m−1

]−1

, (19)

in the case ofxk = vi
〈K〉 for somei in JsFCM, U 〈K+1〉 can be

expressed like (9).

Furthermore, with regard toJeFCM, U 〈K+1〉 can be ex-
pressed from equation (10) and (18) as follows:

uki
〈K+1〉 =

exp
(
−λ‖xk − v〈K〉i ‖qp

)

c∑

j=1

exp
(
−λ‖xk − v〈K〉j ‖qp

) . (20)

3.2. Update of the cluster centerV

In this section, we explain how to obtain the optimized
V in nFCM for U given in advance. It is enough to solve
the equation (11) with regard toV in order to obtain the
optimizedV, becauseJ(U,V) becomes convex function ac-
cording toV if p ≥ 1,q ≥ 1 holds.

In sFCM, we obtain the optimizedV as follows:

∂

∂v j
i

JsnFCM(U,V)

=

n∑

k=1

[
sgn(v j

i − x j
k)q(uki)

m‖xk − vi‖q−p
p |x j

k − v j
i |p−1

]

= 0 . (21)

Equation (21) is equivalent to equation (12) in the case of
p = q = 2. In eFCM, we obtain the optimizedV as follows:

∂

∂v j
i

JenFCM(U,V)

=

n∑

k=1

[
sgn(v j

i − x j
k) q uki ‖xk − vi‖q−p

p |x j
k − v j

i |p−1
]

= 0 . (22)

Equation (22) is equivalent to equation (13) in the case of
p = q = 2.

Neither (21) nor (22) can be solved with regard toV〈K+1〉

analytically for anyp,q.

3.3. Algorithm

In this section, we propose our new algorithm, nFCM us-
ing Newton iteration. Because we can’t obtainV in equa-
tion (11) analytically for anyp,q, we calculateV by solv-
ing f (V) = 0 numerically, wheref : Rcs → Rcs is ex-
pressed as follows:

f (V) = ∇VJ(U,V)

∣∣∣∣∣∣
U= arg

(
min

V
J(U,V)

) (23)

Now, we show the algorithm:

Algorithm 2 (nFCM by using Newton iteration)
nFCM1. Set the value of the cluster prototypeV〈0〉 and Let

K = 0．
nFCM2. Solve the following linear equations

f ′(V〈K〉)
(
V〈K〉 − V〈K+1〉

)
= f (V〈K〉)

to obtainV〈K+1〉. This is equivalent toNewtonitera-
tion.
nFCM3. Check the stopping criterion. If the criterion is
not satisfied, letK beK + 1 and go back to nFCM2.
End of nFCM.

Stopping criterion is defined by determining an accept-
able difference between iterations.

4. Proposed Method II

In this section, we propose another nFCM algorithm
which is using not Newton iteration but alternative opti-
mization. It is available only in the case ofp = 2. That is,
the Euclid norm to theq-th power is used as the dissimilar-
ity in this algorithm.

Sincep = 2,

sgn(v j
i − x j

k)|x j
k − v j

i |p−1 = v j
i − x j

i . (24)

Hence we can construct the algorithm using alternative
optimization by introducing the followingg : Rn×c×Rcs→
Rcs.

In sFCM, if we defineg(U,V) by

g(i−1)s+ j(U,V) =

n∑

k=1

(uki)m‖xk − vi‖q−2
2 x j

k

n∑

k=1

(uki)m‖xk − vi‖q−2
2

, (25)

the equation (21) becomes equivalent to the following:

V = g(U,V). (26)

In eFCM, if we defineg(U,V) by

g(i−1)s+ j(U,V) =

n∑

k=1

uki‖xk − vi‖q−2
2 x j

k

n∑

k=1

uki‖xk − vi‖q−2
2

(27)

the equation (22) becomes equivalent to the equation (26).

Now we show the nFCM algorithm using alternative op-
timization.
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Algorithm 3 (nFCM by alternative optimization)
nFCM’1. Set the value of the cluster prototypeV〈0〉 and Let

K = 0．
nFCM’2. CalculateU 〈K+1〉 by the equation (19)，(9), and
the value ofV〈K〉. nFCM’3. LetV〈K+1〉 = g(U 〈K+1〉,V〈K〉)．
nFCM’4. Check the stopping criterion. If the criterion is
not satisfied, letK beK + 1 and go back to nFCM’2.
End of nFCM’

5. Numerical Examples

In this section, we show some examples of fuzzy classi-
fication functions of nFCM. In each example, 100 trials for
each nFCM algorithm (Algorithm2 and Algorithm3) with
different initial cluster centers are tested and the solution
with the minimal objective function value is selected as
the final classification result. Using the obtained cluster
centersvi , fuzzy classification function valuesUs

i (x) and
Ue

i (x) (i = 1, . . . , c) are calculated for points ˜x around the
initially given dataxk (k = 1, . . . , n) by Algorithm2 and
Algorithm3.

The data set[5] shown in Fig.1 is constructed by 11 ele-
ments in the two dimensional Euclidian space. We classify
the data set into two clusters.

 0

-10 -5  0  5  10

Data

Figure 1: Data

We show the result of snFCM. Fig.2 represents the con-
tour map of the fuzzy classification functionUs

1(x) for
various value ofp,q. Fig.2 consists of nine graphs. In
each one,m equals to 2.0. In the three graphs of upper
row, p = 10.0. Similarly, in the three graphs of middle
row, lower row, p equals to 2.0, 1.5, respectively. In the
three graphs of left column, center column, right column,q
equals to 1.5, 2.0, 10.0, respectively.

In every case, the contour line ofUs
1(x) = 0.5 is line of

x1 = 0, because data set consists of 11 points is symmetri-
cally arranged with regard to the line ofx1 = 0. For each
value ofp, the larger the value ofq is, the wider the area of
Us

1(x) < 0.1 or 0.9 < Us
1(x) becomes.

6. Conclusion

In this paper，we proposed two types of new algorithms
of FCM, in which dissimilarity is neither squared Euclidian
norm norL1 norm.

The first algorithm usesp-norm to theq-th power as the
dissimilarity of FCM. It updates the cluster centerV by
Newton iteration in order to obtain optimized (U,V).

And the second algorithm uses the Euclidian norm to the
q-th power as the dissimilarity of FCM. It is the algorithm
in order to obtain optimized (U,V) by using alternative op-
timization. It becomes equivalent to the conventional FCM
in the case ofq = 2, hence it can be regarded as the gener-
alization of the conventional FCM.

Figure 2: contour lines ofUs
1(x)
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