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Abstract—In this paper, we propose two variants oflongs to the each cluster, and the cluster prototypes of
Fuzzyc-Means (FCM) clustering algorithms. Both mod-FCM. Next, we show two types of objective function. At
els are extension of conventional FCM in which not onlythe end of this section, we show the algorithm of conven-
squared Euclidian normi,; norm but alsop-norm to the tional FCM.
gth power are used as the dissimilarity. One is constructed
by using Newton method, and the other, only for the casg 1. Data, Membership and Cluster Prototypes
of p = 2, is constructed by using alternative optimization. . ,

) Let the data seX = {xc € R®| k= 1,...,n} be given in
1. Introduction advance. We classifX into c clustersGy, ..., G, without

o i .
Clustering is a technique of data classification without?® €Xternal criterion (& ¢ < n). x denotes thg-th com-

external criterion. There are two methods in clustering?onent ofx, wherek = 1,....nandj = 1,...,s. Namely,

One is hierarchical and the other is non-hierarchical. Fuzzy 1 oT

c-means (FCM) is one of the most typical method of non- X=X %) (2)

hierarchical clustering. FCM classifies the data iato : . .
clusters by optimizing an objective function, whexethe , 1he membership) € R™ by whichx, belongs to thé-

number of clusters, is given in advance. Standard fuzzg‘ clusterG ig denobeg by € [0, 1]d 'I;]he prototype of the
c-means (sFCM)[1][2] and entropy regularized fuzay us_te(eri IS éa?)ote Wi € R -Ia” the cluster prototype
means (eFCM)[3] are well-known methods among FCM€! IS denoted by € R™. Namely,
algorithms. 1 T

As the dissimilarity in FCM, squared Euclidian norm is V= (v Vg )T (2
most commonly used, thanks to its easily implementable o
alterngtivedoptimiza}tionh soItL)Jtion. Odn tcr;e othelr hatl)llgi, hZ-Z- Dissimilarity
norm based FCM also has been studied actively. About the . il .
reason, Jajuga[4] pointed out that thenorm based FCM  VVe define the dissimilarity as follows:
is little affected on outliers, and Bobrowski et al.[5] con-pefinition 1 (Dissimilarity) Let X be an arbitrary sefl A
cluded that., norm based FCM matches “boxy” data well,fynctiond : X x X — R is dissimilarity ifd satisfies the
and better accuracy than FCM can using squared EUC|I|d|q6||Ong for any elementsy, X, of X:
norm. ) d(xq, > d(xq, =0,
Bobrowski et al. treated not only; norm but alsd.., O%‘E,‘g dgi gg - d&; §3 ) 1
norm as the dissimilarity. Miyamoto et al.[6] has studie Any norms inR® always satisfy the property @)(b) of

not only L, norm based sFCM but alsb, norm based he definition 1, hence we can use each norm as the dissim-
eFCM andL; norm based mixture models. ilarity of FCMO
n

But the most og previous worrlfs éjse sqluared fEuclidia
norm, L; norm andL., norm as the dissimilarity of FCM. A .
It has been hardly examined the algorithm, the numeric&t3: Obiective Function
result, and the féectiveness of FCM using-norms to the ~ FCM is an optimized clustering to obtain the member-

g-th power as the dissimilarity. It is impossible to obtainshipU and the cluster centat, which minimize the objec-
the cluster centev analytically in that case, that is one of tive functionJ(U, V) under the constrairitl¢

the reason why th@-norm based FCM (nFCM) has not
been studied.

In this paper, we propose algorithms for NFCM which  M; = {
is the generalization of the conventional FCM. In our new
algorithm, p-norms to theg-th power is used as the dissim- o ] )
ilarity, andV is obtained not analytically but numerically. The objective function of the standard regularized fuzzy

In"the section 2, we prescribe our notation and explaimeans (SFCM) is represented as follows:
the cr?nv]gntional FCM. In the section ﬁ (\;ve pror;])ose an al- he
gorithm for nFCM using Newton method. In the section
4, we propose another algorithm. It is available if we use Jsrem(U, V) = Z Z(Uki)mdki (4)
the Euclidian norm to thg-th power as the dissimilarity of k=1 i=1

FCM. In the section 5, we show some numerical examples, . .
In the section 6, we summarize our conclusions. P Wherem e [1, ). The objective function of the entropy
' regularized fuzzyc-means (eFCM) is represented as fol-

lows:

(uki) : ug € [0, 1], i Ui = 1 for all k}. 3)

i=1

2. Preliminaries

n ¢ n ¢
In this section, we define some notations which are data  J.c(U, V) = UG + T Ui logu (5)
HYERESH)

for clustering, the membership by which the each data be- e e
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whereAd > 0. 2.4.2. Update of the cluster centér
dy denotes the dissimilarity betweeg andv;. We usu- o . . .
ally use the squared Euclidian norm as the dissimilarity. The objective functioJ(U, V) is a convex function ac-

Namely, cording toV if we use the squared Euclid norm as the dis-
) S i e similarity. Hence in order to obtaM** in FCM3., solve
di = X = Villz = Z (% = V)" (6) the following equation with regard t¢:
=1
VvJ(U,V) =0. (11)
In theL;-norm based FCM([4]-[6]), the following; norm
is used as the dissimilarity: In sSFCM, we obtairV**? in FCM3. as follows:
S
dhi = X Wills = Y 1 =] (7) oy
; ' D (U™
vion = KL (12)
2.4. FCM alternative optimization algorithm Z(uao m
ki
In this section, we show the conventional alternative op- k=1

timization algorithm of FCM:

Algorithm 1 (FCM)

FCML1. Set the value of the cluster prototyy@ and Let n
K = 00 D U

FCM2. CalculateU** by

And in sFCM, we obtaivV**? in FCM3. as follows:

. k=1
Ve = ——— (13)
K
UeD = arg( min J(U, V‘“)). Zuki
UeMs k=1
FCM3. CalculateV*™ by However, it is dfficult to solve the equation (11) with

regard toV for any p, q. Equation (12), (13) can be solved

: just because the dissimilarity is denoted by equation (6).
K+1) _ K+1)
V& = arg(rrvn J(U ,V)).

2.5. Fuzzy Classification Function
FCM4. Check the stopping criterion. If the criterion is not o ) ) )
satisfied, leK beK + 1 and go back to FCM2. Fuzzy classification functions[7] are available in FCMs
End of FCM. g Which show how prototypical an arbitrary point in the data
space is to a cluster by extending the memberhip the
. whole space. Fuzzy classification function for SFCM with
We useJspcm of (4) or Jepcm Of (5) as the objective respect to a brand-new datune R® is defined as
function J in the above algorithm.

. 1\m1 -1
2.4.1. Update of the members - (a’)
’ moersib U | =—| (14)
Jsrcmis a convex function according td if m> 1. And 1\
Jercmis a convex function according td if 2 > 0. Z(E;)

Both Jsrcm and Jercm are convex functions with regard i=1
toV if we use the squared Euclidian norm as the dissimilar- o ) )
ity. HenceU*** in FCM2. can be expressed as the formuland fuzzy classification function for eFCM with respect to

of V¥ explicitly via the Lagrange multiplier method. a brand-new datum € R® is defined as
Actually, in the case ok # V(i = 1,-- -, €) in Jsrcm, . oAd
(1) e = = (15)
d_ﬂi() -1 e—)&i
e = [C—] , ) ,Z‘

2" |

R In these equations,
in the case ok, = v* for somei in Jspcm, d = 1% - vil2 (16)

K+1) K+1) __ H H
Ui =1 Ui =00 =1). ©) in the case of squared Euclidian norm based sFCM, and

With regard toJercm 0 G = 1% - villy (17)
v = ST (10)
ki C " ’ in the case ofL;norm based sFCM. Fuzzy classification
Ze" ki function is valid to investigate the features of FCM since
=1 it clarify the classifying situation in whole space than only
memberships for finite number of data.
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3. Proposed Method | 3.3. Algorithm

In this section, we propose @-norm based FCM _ Inthis section, we propose our new algorithm, nFCM us-
(nFCM) algorithm using Newton iteration. First we ex-ing Newton iteration. Because we can't obtadrin equa-
plain how to updatdJ, V if we use thep-norm to theg-th  tion (11) analytically for anyp. g, we calculate/ by solv-

power as the dissimilaritgl;. Namely, ing f(V) = 0 numerically, wheref : R®® — R*is ex-
pressed as follows:
. s P a/p
R TIVENVATL: R _vip
dhi = lIx—ill§ = (Z|xk vl ) (18) F(V) = Ty J(U.V) 23)
=1 U= arg(nvn J(U,V))
Next, we show the algorithm in whic¥ is obtained not
analytically but numerically. Now, we show the algorithm:
1. fth hi Algorithm 2 (nFCM by using Newton iteration)
3.1. Update of the membershi) nFCML1. Set the value of the cluster prototyg& and Let
In nNFCM, we can obtain optimized as the formula of K =00
V* explicitly as well as the discussion in the section 2.4.1a9FCM2. Solve the following linear equations
In the case ok # V(i = 1,---,¢) in Jsrcm,
i f/(V<K>)(V<K> _ V<K+1>) = f(V¥)
1 m-1
o (ka—vi““n‘é) o to obtainV*®. This is equivalent ttNewtonitera-
A | (19 tion,
(;@)m nFCM3. Check the stopping criterion. If the criterion is
i IVl not satisfied, leK beK + 1 and go back to nFCM2.
= End of nFCM.
in the case of = vi* for somei in Jsec, U™ can be Stopping criterion is defined by determining an accept-
expressed like (9). able diference between iterations.
Furthermore, with regard tdercpy, U™ can be ex-
pressed from equation (10) and (18) as follows: 4. Proposed Method I
exp(—/l||xk—\ﬁK>||%) In this section, we propose another nFCM algorithm
U = : (20) which is using not Newton iteration but alternative opti-
& -~ mization. It is available only in the case pf= 2. That is,
Z eXp(—/IIIXk - \/JK ”p) the Euclid norm to the-th power is used as the dissimilar-
j=1 ity in this algorithm.
Sincep = 2,

3.2. Update of the cluster centei/

: . . . . sgn@) — ¥ —ViPL = v - X, 24
In this section, we explain how to obtain the optimized g = X% — Vil i % (24)
Vin nFCM for U given in advance. Itis enough to solve Hence we can construct the algorithm using alternative

the equation (11) with regard 16 in order to obtain the i ot : i i - RNXCy RCS
optimizedV, becausd(U, V) becomes convex function ac- %pc)'g.mlzanon by introducing the following : R™*xR™ —

cording toV if p> 1,9 > 1 holds.

In SECM, we obtain the optimized as follows: In sFCM, if we defineg(U, V) by
d n .
pyieiac(CAY D (ua)™x = il 2]
: K=
. o o gi-vs+j(U, V) = i ; (25)
= > [san@ = x})aua) ™% - vllg Pix - v/ 1P D (wa)mlx = villg 2
k=1 k=1
=0. (1)

the equation (21) becomes equivalent to the following:

Equation (21) is equivalent to equation (12) in the case of _

p =q=2. IneFCM, we obtain the optimizadas follows: Vv =g(UV). (26)
In eFCM, if we defingy(U, V) by

0
_jJenFCM(U, V)
ov;

n
0 Zuki||Xk—Vi||272X1j<
= > [ san¢ - x) q ua %= illf P 1x} - vIP| Gi-ns+i (U, V) = —= (27)
_ kz(; _ 22) kZ:;UkiIIXk — vl
Etlugtizog'(ZZ) is equivalent to equation (13) in the case Qfie equation (22) becomes equivalent to the equation (26).
Neither (21) nor (22) can be solved with regardtt™® Now we show the nFCM algorithm using alternative op-
analytically for anyp, g. timization.
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Algorithm 3 (nFCM by alternative optimization)

nFCM'1. Set the value of the cluster prototyg& and Let
K =00

nFCM’'2. CalculateU** by the equation (19) (9), and

the value oV®. NFCM’3. LetV*™® = g(U*»,vV*)O )

nFCM’4. Check the stopping criterion. If the criterion is

not satisfied, leK beK + 1 and go back to nFCM’2.

End of nNFCM’

5. Numerical Examples

In this section, we show some examples of fuzzy classi.

fication functions of NFCM. In each example, 100 trials for
each nFCM algorithm (Algorithm2 and Algorithm3) with
different initial cluster centers are tested and the solutio
with the minimal objective function value is selected as:
the final classification result. Using the obtained clustel
centersv;, fuzzy classification function valudd®(x) and

UZ(X) (i = 1,...,c) are calculated for pointg around the

initially given datax (k = 1,...,n) by Algorithm2 and
Algorithm3.

The data set[5] shown in Fig.1 is constructed by 11 ele-
ments in the two dimensional Euclidian space. We classify
the data set into two clusters.

Data  + [1]

(2]

(3]
Figure 1: Data

We show the result of snFCM. Fig.2 represents the con{4l
tour map of the fuzzy classification functidd(x) for
various value ofp,q. Fig.2 consists of nine graphs. In
each onem equals to D. In the three graphs of upper
row, p = 100. Similarly, in the three graphs of middle
row, lower row, p equals to 2, 15, respectively. In the
three graphs of left column, center column, right column,
equals to 15, 20, 100, respectively.

In every case, the contour line bff(x) = 0.5 is line of
x; = 0, because data set consists of 11 points is symmetri-
cally arranged with regard to the line &f = 0. For each [7]
value ofp, the larger the value afis, the wider the area of
UZ(x) < 0.1 or Q9 < UF(X) becomes.

[5]

(6]

6. Conclusion

In this papelrl we proposed two types of new algorithms
of FCM, in which dissimilarity is neither squared Euclidian
norm norL; norm.

The first algorithm usep-norm to theg-th power as the
dissimilarity of FCM. It updates the cluster centérby
Newton iteration in order to obtain optimized,(V).

And the second algorithm uses the Euclidian norm to the
g-th power as the dissimilarity of FCM. It is the algorithm
in order to obtain optimizedJ, V) by using alternative op-
timization. It becomes equivalent to the conventional FCM
in the case of] = 2, hence it can be regarded as the gener-
alization of the conventional FCM.
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Figure 2: contour lines df) 3(x)
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