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Abstract—Recent studies in the field of neuroscience
have reported the observation of neuronal avalanches
in cultured cortical slices of the brain. The neuronal
avalanches are considered as one of the mechanisms of
memory functions in the brain.

We have already shown that the spike-timing-dependent
plasticity (STDP) can reproduce network activities with
neuronal-avalanche properties, which indicates that STDP
is one of the mechanisms to produce neuronal avalanches.
On the other hand, “consistency” is another essential key
for information transmission in biological and physiologi-
cal systems and also for the reproducibility of spatiotem-
poral patterns in the brain activities. Therefore, one of the
possible hypotheses is that the neuronal avalanche is a kind
of consistency in the brain. In this paper, to investigate
whether the neuronal avalanches show consistency or not,
we analyze the activity patterns emerging in the STDP net-
work from the viewpoint of consistency. As a result, it is
shown that the activity patterns in the STDP network have
high consistency and STDP transformation increases the
consistency of the avalanche patterns.

1. Introduction

Recently, much attention has been paid to neuronal
avalanche in cortical areas because of its possible func-
tional roles to realize the memory in the brain [1], [2].
It is widely acknowledged that one of the characteristic
properties of the neuronal avalanche is quantified by event
sizes and durations of network activity patterns that form
power-law distributions with exponents −1.5 and −2, re-
spectively [1]. These power-law exponents are also ob-
served in avalanches on snow mountains. Accordingly, the
activities with these power-law exponents are named neu-
ronal avalanche after the avalanches in the snow mountains.
These power-law exponents are often reported in nonlinear
dynamical systems in a critical state [3]. The previous stud-
ies suggested that the neuronal avalanches may be caused
by a critical process where information processing can be
optimized [1]. In addition, activity patterns in the neuronal
avalanches are not only highly diverse but also reproducible
[2]. According to these properties, it is suggested that the
neuronal avalanches play important roles for the brain func-
tions of memory [1], [2].

Modification of synaptic connections in neural networks
depends on relative spike timing between pre- and postsy-
naptic action potentials [4]. These synaptic modifications
are called spike-timing-dependent plasticity (STDP). The
long-term potentiation (LTP) occurs when a postsynaptic
action potential arises repetitively after a presynaptic action

potential, whereas the long-term depression (LTD) occurs
in the case of the reverse order of action potentials.

It is natural to expect that STDP is one of the mecha-
nisms of constructing the characteristic structures of the
neural networks, and such structures can produce the
neuronal avalanches. Based on this idea, we have al-
ready shown STDP realize the properties of the neuronal
avalanches [5], [6], [7].

“Consistency” [8] is one of the most interesting theory in
the nonlinear dynamical systems. Consistency is defined as
reproducibility of the response from a nonlinear dynamical
system repeatedly driven by the input, despite starting from
different initial internal states of the dynamical system [8].
Consistency is considered as an essential for information
transmission in biological systems and for reproducibility
of spatiotemporal patterns in the brain activities [8]. In
the previous study [7], we have shown that spatiotempo-
ral firing patterns can be reproduced in the STDP network.
However, the reproducibility of the spatiotemporal firing
patterns has not produced by repetitive inputs. Therefore,
it is not clear whether the consistency is an underlying phe-
nomenon to produce the neuronal avalanche in the brain
system. In this paper, to investigate whether the avalanche
activities show consistency or not, we analyze the activ-
ity patterns emerging in the STDP network with repeatedly
driven external inputs.

2. Methods
2.1. Neural networks with STDP

In our numerical experiments, we used a neuron model
whose dynamics is represented by 2-dimensional ordinary
differential equations. The dynamics of the ith neuron is
defined as follows:

v̇i = 0.04v2
i + 5vi + 140 − ui + Isyn

i (t) + Iext
i (t) + Ibg

i (t), (1)
u̇i = a(bvi − ui), (2)

where vi and ui are the membrane potential and the re-
covery variable of the ith neuron, respectively [9]. The
variables Isyn

i (t), Iext
i (t) and Ibg

i (t) represent sum of synap-
tic inputs, external inputs and background inputs to the ith
neuron at time t, respectively. The sum of synaptic inputs
Isyn
i (t) are modeled as:

∑N
j
∑

k g jiδ(t − tk
j) where N repre-

sents the number of neurons in the network, g ji represents a
synaptic weight from the jth to the ith neuron, tk

j represents
the kth spike time of the jth neuron, and δ(·) represents the
Dirac delta function. If the variable vi reaches 30 [mV],
the ith neuron fires and the variables vi and ui are reset to
c and ui + d. For all the neurons, we set the parameters
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(b, c) = (0.2,−65). We set (a, d) = (0.02, 8) for excitatory
neurons, while (a, d) = (0.1, 2) for inhibitory neurons. In
the experiments, we set the number of neurons in the net-
work N = 10, 000 of which 8, 000 neurons are excitatory
and 2, 000 neurons are inhibitory. In our network, pace-
maker neurons activate the network [10] . In this paper,
the pacemaker neurons are defined to fire at a constant fre-
quency and are not affected by inputs from the other neu-
rons. For the pacemaker neurons, we always set Iext

i (t) = 5
and Ibg

i (t) = 0, while for other neurons we set Iext
i (t) = 0

and Ibg
i (t) as independent Poisson-process spike trains with

firing rate λ with amplitude 3.1 [pA]. We used 100 excita-
tory neurons as pacemaker neurons. Each pacemaker neu-
ron projects to 65 excitatory neurons that are randomly se-
lected. Other neurons have average 1,000 random connec-
tions with other neurons. Inhibitory neurons are connected
only to excitatory neurons except pacemaker neurons.

In the neural network, synaptic weights from the presy-
naptic neuron j to the postsynaptic neuron i are modified
depending on pre- and postsynaptic activities. The synap-
tic modification by the STDP is described by the following
equations [11]:

∆g ji =


A+exp(−

ti − t j

τ
) (t j < ti),

−A−exp(−
t j − ti
τ

) (t j ≥ ti),
(3)

where A+ (= 0.09) and A− (= 0.1) are the learning rates
of the LTP and the LTD, τ (= 10) [ms] is a time con-
stant that determines the exponential decays of the LTP
and LTD, and ti and t j are the firing time of the ith and
jth neurons, respectively [11]. In the simulation, nearest-
neighbor spikes contribute to the long-term synaptic modi-
fications [12]. The STDP learning is applied only to excita-
tory synapses from a physiological point of view [13]. The
excitatory synapses are additively modified through STDP,
thus we limit a range of synaptic weights with hard bounds.
The range of synaptic weights is set as gmin ≤ g ji ≤ gmax
where gmin and gmax are 0 and 10, respectively. Initial
synaptic weights are 0.01 for excitatory connections, and
−0.03 for inhibitory connections. The synaptic weights of
connections from the pacemaker neurons are 20.

After the STDP learning for 100 [s], we eliminate the
pacemaker neurons. To drive the neural network, we ran-
domly select Nd excitatory neurons (i1, i2, . . . , iNd ) from
the network and apply a supra-threshold input of Iext

i (t) =
20 [pA] to one of the neurons every T (= 200) [ms] by
turns. After we apply an input to the iNd th neuron, the i1th
neuron is driven again. Therefore, neurons are repeatedly
driven by a supra-threshold input every Nd × T [ms].
2.2. Consistency analysis of avalanche patterns

To investigate the consistency of the STDP-network ac-
tivities, we quantified the similarity of avalanche patterns.
To quantify similarity, we transformed the firing patterns
to vectors (Fig. 1). At first, we observe N spike se-
quences for T (= 103) [s] from the network. Each spike
sequence is divided by bins whose width is ∆t (= 4) [ms].
Thus, we obtain n = bT /∆tc bins for each spike sequence,
where b·c represents the floor function. Let us describe the
spike sequence of the ith neuron as {bi(1), bi(2), . . . , bi(n)}.
From this description, we can write an instantaneous spa-
tial pattern of the network activity with a vector b(i) =

(b1(i), b2(i), . . . , bN(i))T . A neuron in the network is acti-
vated by the external inputs every T [ms], so that we re-
gard the network activity for T [ms] as a block. Thus, the
jth spatiotemporal pattern of the network can be written as
a combination of vectors B j = (b( j × T + 1),b( j × T +
2), . . . , b( j × T + T )). This vector represents single neu-
ronal avalanche. Accordingly, we compute a correlation
coefficient to quantify the similarity between vectors. The
correlation coefficient between vectors A and B is defined
by the following equation:

C(A,B) =
E(AB) − E(A)E(B)
σ(A)σ(B)

, (4)

where E(·) is the average value, σ(·) is the standard devia-
tion, and AB is the vector dot product.

Figure 1: Transformation from firing patterns to a vector.

3. Results
We show the correlation matrices in Fig. 2. The i jth el-

ement of the correlation matrix represents the correlation
coefficient between the ith and jth avalanche patterns with
color bar. We applied a paired clustering algorithm to all
the correlation matrices [2] to obtain similar avalanche pat-
terns. From Fig. 2 (a) left, it is clear that some highly-
correlated clusters exist. These clusters mean that high sim-
ilarity patterns repeatedly emerged. From Fig. 2 (a) mid-
dle and right, it is clear that most of the highly-correlated
clusters vanished. These results of correlation matrices in-
dicate that if avalanche patterns emerged in early periods,
they have higher reproducibility and in later periods do not.
Figure 2 (b) left, similar to Fig. 2 (a) left, shows the exis-
tence of some high correlation clusters. Figure 2 (b) mid-
dle and right, unlike Fig. 2 (a) middle and right, show
that high correlation clusters remain. However, most of the
clusters are merged into one large cluster (Fig. 2 (b) mid-
dle), subsequently, the correlation of the cluster gets lower
(Fig. 2 (b) right). These correlation matrices in Fig. 2 (a)
and (b) indicate that, when Nd = 10, the reproducibility
of the avalanche patterns decays with time. Figure 2 (c)
left shows that some high correlation clusters exist in a few
avalanche patterns. These correlation clusters mean that
most of the avalanche patterns emerging in the early pe-
riod have low reproducibility, but some avalanche patterns
have high reproducibility. Unlike middle and right panels
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(a)

(b)

(c)

(d)

Figure 2: Correlation matrices sorted by the clustering algorithm [2]. The number of neurons driven by the external input
Nd and the frequencies of background inputs applied to the network λ were set to (a) 10, 300, (b) 10, 400, (c) 50, 300, (b)
50, 400. Left, middle and right panels are produced by avalanche patterns recorded in the periods [0, 100], [500, 600] and
[900, 1000] [s], respectively.
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in Fig. 2 (a) and (b), Fig. 2 (c) middle and right panels
show that some high correlation clusters remain and are
not merged into a single cluster with time. Similar to Fig.
2 (c), Fig. 2 (d) shows that the correlation matrices pro-
duced by avalanche patterns emerging in each period have
some high correlation clusters. These correlation matrices
in Fig. 2 (c) and (d) indicate that, when Nd = 50, high
reproducibility in the avalanche patterns is kept during the
whole period in our simulation. From these results in Fig.
2, it is suggested that the avalanche patterns emerging in
early period have high reproducibility, and developments of
the reproducibility depend on the number of neurons which
an external input is applied.

To investigate how the developments of the reproducibil-
ity depend on Nd, we plot temporal changes of averaged
correlation coefficients. At first, in Fig. 3 (a), we plot
the averaged correlation coefficients in each period when
Nd = 5, 50 and λ = 300, 400 [Hz], respectively. When
Nd = 5, averaged correlation coefficients get lower with
time in both λ = 300 and 400. On the other hand, when
Nd = 50, averaged correlation coefficients get higher with
time in both λ = 300 and 400. Next, in Fig. 3 (b), we
plot averaged correlation coefficients in the period [900,
1000] by changing Nd from 5 to 50. When λ = 300 and
400, averaged correlation coefficients increase with Nd un-
til Nd = 30. These results in Fig. 3 show that correlation
matrices produced by avalanche patterns with large Nd have
average correlations increasing with time.

(a)

(b)

Figure 3: Averaged correlation coefficients of correlation
matrices. (a) Averaged correlation coefficients calculated
in a matrix produced by avalanche patterns recorded in the
period [t, t + 100] are plotted at t. Nd = 10, 50 and λ =
300, 400. (b) Averaged correlation coefficients calculated
in a matrix produced by avalanche patterns recorded in the
period [900, 1000] are plotted by changing Nd from 5 to
50.

4. Conclusion
In this paper, we analyzed neuronal activities af-

ter the STDP learning from the viewpoints of neuronal
avalanches. We investigated if the activity patterns in neu-
ronal avalanches have high consistency, namely, whether
or not a firing of the same external-input neuron could re-
produce the activity patterns. As a result, correlation ma-
trices produced by avalanche patterns emerged from the
same external-input neuron showed high reproducibility.
Furthermore, the average correlation coefficients in corre-
lation matrices increase with time if the network was driven
with large Nd, while, they decrease with time if driven with
small Nd. From these results, it is clarified that avalanche
patterns have high consistency and STDP transformation to
the neural network evoked by activity patterns with large
Nd strengthens consistency in the avalanche patterns. It is
suggested that STDP transformation can enhance the con-
sistency in the avalanche patterns under the various condi-
tions of the external input patterns.

In this paper, we analyzed consistency of the activities in
the network after STDP transformation, but did not men-
tion the network structures. Thus, it is an important future
problem to investigate how the neural network structures
affect consistency of activity patterns.
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