
An Explit Mapping for Kernel Data Analysis and Appliation to -MeansClusteringSadaaki Miyamoto1 Keisuke Sawazaki21.Department of Risk Engineering, University of TsukubaTsukuba, Japan2.Graduate Shool of Systems and Information Engineering, University of TsukubaTsukuba, JapanEmail: miyamoto�risk.tuskuba.a.jp, sawazaki�soft.risk.tsukuba.a.jpAbstrat� Kernel data analysis is now beoming standard inmany appliations of data analysis. An impliit mapping into a high-dimensional feature spae is �rst assumed, in other words, an expliitform of the mapping is unknown but their inner produt should beknown. Contrary to this ommon assumption, we introdue an ex-pliit mapping whih is standard in a sense. The reason why we usethis mapping is as follows. (1) the use of this mapping does not loseany fundamental information in kernel data analysis. (2) We havethe same formulas in every kernel methods with and without this ex-pliit mapping. (2) Usually the derivation beomes simpler by usingthis mapping. (3) New appliations of the kernel methods beomepossible using this mapping. As an appliation we onsider fuzzy-means lustering and prinipal omponent analysis. A typial nu-merial example is shown to observe the effetiveness of the presentmethod.Keywords�Kernel data analysis, fuzzy lustering, expliit map-ping 1 IntrodutionKernel funtions [6℄ noted in support vetor mahines[7℄ nowis a well-known tehnique and beoming standard in manyappliations of data analysis. An important point in the ker-nel trik is that although we onsider a mapping from a dataspae into a high-dimensional feature spae, we need not toknow its expliit form but we should know the inner produt ofthe feature spae. Generally, the feature spae is not uniquelydetermined. Aordingly every formulas in data analysis us-ing kernel funtions should be desribed in terms of the innerprodut.Although kernel funtions are really useful, but the deriva-tion is sometimes ompliated when original formulas shouldbe rewritten by the inner produt forms. A typial example iskernel fuzzy -means lustering [3℄ and kernel SOM [4℄.Here is a question: an we have a useful and expliit map-ping and expliit representation of a high-dimensional featurespae? If we have suh a mapping, we an use many existingtools of multivariate analysis. The answer is YES as far as wedo not need a funtion with a variable x 2 Rp. Note that somemethods in data analysis suh as the prinipal omponent andluster analysis does not need suh a funtion, while lassi�-ation rules suh as support vetor mahines and disriminantanalysis need funtions with a variable.This means that as far as we are onerned with lusteringand prinipal omponent analysis, we have a simpler method.This paper shows the way how we have suh an expliit map-

ping and how to use this mapping. This mapping is simpleenough and useful in the sense that it leads to the same formu-las when transformed into the inner produt forms. In short,this expliit mapping and assoiated feature spae have all in-formation that is used in kernel funtions for data analysis.To illustrate the effetiveness of the present method, a typi-al result of kernel fuzzy -means lustering with luster en-ters will be shown using kernel prinipal omponent analysis.2 An Expliit Mapping for Kernel Funtions2.1 Preliminary onsiderationA set of dataX = fx1; : : : ; xng � Rp is assumed to be given.Eah data unit is also alled an objet or an individual and it isa point in the p-dimensional real spae xk = (x1k ; : : : ; xpk)T 2Rp. We onsider a mapping into a high-dimensional featurespae �: Rp ! H and assoiated kernel funtionK(x; y) = h�(x);�(y)iwhere h�; �i is an inner produt of H . We also assume k � kHis a norm ofH . ThusH is an inner produt spae. In this se-tion we �rst suppose, as usual, we do not know funtion �(�)expliitly but we know K(x; y). Spei�ally, the Gaussiankernel is frequently used:K(x; y) = exp(��kx� yk2)where � > 0 and kxk is the norm ofRp.An objetive funtion of fuzzy -means using the featurespaeH is the following.JH(U;W ) = Xi=1 nXk=1(uki)mk�(xk)�Wik2H ; (m > 1)where U = (uki) is n�  matrix representing membership ofxk to luster i. U has the next onstraint when it is optimized.M = fU = (uki) : Xi=1 uki = 1; u`j � 0;8`; jg;whileW = (W1; : : : ;W) is a olletion of luster enters inH .The iterative algorithm of fuzzy -means lustering [1℄ isbasially an alternative minimization of JH(U;W ) with re-
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spet to U and W until onvergene. We have the next solu-tions. uki = 24 Xj=1�D(xk ;Wi)D(xk ;Wj)� 1m�135�1 ; (1)Wi = nXk=1(uki)m�(xk)nXk=1(uki)m (2)where we put D(xk ;Wi) = k�(xk)�Wik2H : (3)Equations (1) and (2) should be repeated until onvergene,but sine �(xk) is unknown, we should use another formulafor kernel fuzzy -means lustering.The formula is derived by eliminating (2) from iteration,i.e., we substitute (2) into (3) to have an updating formula forD(xk;Wi)[3℄:D(xk;Wi) = K(xk; xk)� 2Pnk=1(uki)m nXj=1(uji)mK(xj ; xk)+ 1fPnk=1(uki)mg2 nXj=1 nX̀=1(ujiu`i)mK(xj ; x`):(4)We thus repeat (1) and (4) until onvergene when kernelfuzzy -means lustering should be used.2.2 An expliit mapping and its propertiesThe above derivation needs onsideration to transform an orig-inal algorithm into another one, due to the fat that no expliitmapping is available.This means that if we have an expliit mapping, then noderivation is needed and we just use an existing algorithm.We show two expliit mappings of whih the latter is moreuseful andwill be used throughout appliations. First mappingis very simple:�1(xk) = ek (k = 1; 2; : : : ; n) (5)whereH = Rn and ek is the k-th unit vetor that has unity asith omponent and all other omponents are zero. Note that�1 : X ! Rn, i.e., �(�) is not de�ned onRp but is limited tothe �nite set X . We also assume that the inner produt ofRnis hek; e`i = K(xk; x`) (6)instead of the standard inner produt hek; e`i = Æk` (Æk` is theKroneker delta).We haveProposition 1 If kernel K(x; y) is positive de�nite, hek; e`ide�ned by (6) satisfy the axioms of the inner produt of Rn,that is,Rn with (6) is an inner produt spae.

Note 1 The detailed proof is given in standard textbooks [6℄.As a rough sketh of the proof, note that the Mererondition[7℄ Z Z K(x; y)�(x)�(y)dxdy � 0for all �(x) guaranteesXi;j K(xi; xj)�i�j � 08�i 2 R, by putting �(x) =Pi �iÆ(x� xi).Thus the matrixK = (K(xi; xj)) is positive semi-de�nite.The kernel funtion generally does not distinguish positive-semide�niteness and positive-de�niteness, while positive-de�niteness is required for the de�nition of an inner produt.To solve this problem, we introdue another expliit map-ping. For this purpose note that a positive semi-de�nite matrixK an be divided into K = K 12K 12 . We thus de�ne the se-ond mapping:�2(xk) = K 12 ek (k = 1; 2; : : : ; n) (7)In this ase, �2 : X ! Rn, i.e., the domain and the odomainare the same as �1, but now the inner produt of Rn is stan-dard: hek; e`i = Æk`: (8)We now apply mapping �2 to fuzzy -means lustering. Itis suf�ient to show the optimal solution ofWi.Proposition 2 For all positive semi-de�nite kernel K(x; y)and mapping �2 by (7), the luster enters are the same andare given byWi = � (u1i)mPnk=1(uki)m ; : : : ; (uni)mPnk=1(uki)m�T ; i = 1; : : : ; (9)Note 2 The proof of this proposition is not dif�ult by observ-ing losely (2). Note thatWi given by (2) is the solution ofminWi Xk (uki)mkxk �Wik2where the spae an be an arbitrary inner produt spae, sinethe derivation of (2) uses a general variational priniple validfor any Hilbert spae. Note moreover that we substitute (9)into (1) to have the optimal solution of U . It should be notedthat although optimal Wi is the same for all positive de�nitekernel, optimal U differs beause (6) give different values fordifferent kernels.The proof of the next proposition is almost trivial and isomitted.Proposition 3 Substituting (9) into (3), we have (4).That is, (9) derived from the single mapping (5) has allneessary and suf�ient information for kernel fuzzy -meanslustering.
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As noted above, formulas in kernel prinipal omponentanalysis are derived without any dif�ulty by using �2, sinethe inner produt is just standard. The mapping (7) is more-over useful for appliation to LVQ and SOM [2℄, where ve-tors for updating quantization vetors should be based onlearning. The expliit mapping enables vetor representa-tions in Rn, we an use every formulas in LVQ and SOM,while usual kernel methods should eliminate quantization ve-tors [5℄. 3 A Typial Numerial ExampleA set of data shown in Fig. 1 was used to show the effetive-ness of the proposed method. This example is well-known inthe sense that a usual fuzzy -means (abbreviated as FCM)algorithm annot separate the outer irle and the inner ball,while a kernel-based -means algorithm an. Figure 2 depitsthe result of an ordinary FCM, while Figure 3 suessfullyseparated the two groups. The ordinary FCM algorithm with�2 has been used.Moreover Figure 4 shows two major prinipal omponentswith mapping�2, where the method of the ordinary prinipalomponent analysis has been applied.
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 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9Figure 1: A ball in a irle with 150 data points.4 ConlusionsWe have proposed the use of an expliit mapping for kernelbased data analysis. The seond mapping seems to be moreuseful in general but either one of �1 and �2 an be used,as there is no fundamental differene between the two, exeptthat the seond an be applied even when the kernel is positivesemi-de�nite. In summary, we note the following advantagesof the present method.1. Using this mapping, we do not lose any fundamental in-formation in kernel data analysis.2. Generally the derivation beomes simpler using thismapping.3. New appliations of the kernel methods beome easierusing this mapping.
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Figure 2: The result of ordinary FCM applied to data in Fig. 1.
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Figure 3: The result of kernel-based FCM applied to data inFig. 1.
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Figure 4: The display of two major prinipal omponents todata in Fig. 1 with kernel �2.
- 558 -



The last statement should be further studied. In relation tofuzzy lustering, the method of fuzzy -varieties should bestudied. We moreover have many researh possibilities relatedto SOM.Moreover we have another possibility to use nonlinearmethods of data analysis to the transformed data, where theabove expliit mapping is essential. Without suh a mapping,we annot apply a nonlinear tool of data analysis.AknowledgmentThis researh has partly been supported by the Grant-in-Aidfor Sienti� Researh, JSPS, Japan, No.19300074.Referenes[1℄ J.C. Bezdek, Pattern Reognition with Fuzzy Objetive Fun-tions, Plenum Press, New York, 1981.[2℄ T. Kohonen, Self-Organizing Maps, 2nd Ed., Springer, Berlin,1995.[3℄ S. Miyamoto, D. Suizu, Fuzzy -means lustering using trans-formations into high dimensional spaes, Pro. of FSKD'02:1st International Conferene on Fuzzy Systems and KnowledgeDisovery, Nov. 18-22, 2002, Singapore, Vol.2, pp. 656�660.[4℄ S. Miyamoto, H. Ihihashi, K. Honda, Algorithms for FuzzyClustering, Springer, Berlin, 2008.[5℄ K. Mizutani, S. Miyamoto, Fuzzy multiset spae and -meanslustering using kernels with appliation to information re-trieval. in T.Bilgi̧ et al. Eds.: IFSA 2003, LNAI2715, Springer,Berlin, pp.387-395, 2003.[6℄ B. Shölkopf, A.J. Smola, Learning with Kernels, the MITPress, Cambridge, 2002.[7℄ V.N. Vapnik, Statistial Learning Theory, Wiley, 1998.
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