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Abstract– The way in which brain structure constrains 

the brain’s functional activity is one of the critical 

questions in the field of neuroscience. In this research, 

first, we reconstructed causal interactions among neurons 

from the hippocampus using spike trains, which were 

recorded on a 512 electrode array system. Next, we 

separated the network structures by using several 

community detection analysis techniques, and extracted 

the subgroups of neurons communicating with each other. 

As a result, we could compare the estimated separation 

line and the structural dividing lines among Dentate 

Gyrus (DG), CA3, CA1 hippocampal regions. In this 

paper, we show the primitive result. 

In the main conference, I will also talk about the 

advanced result and discuss how it relates to the concept 

of �euronal Avalanches [1]. 

 

 

1. Introduction 
 

Neurons connect and interact with each other through 

spike firings. A critical and important area where 

neuroscience is advancing today is how the spatial 

pattern of firing activity of the network is constrained by 

the structural network of the brain. 

     Researchers in the field of macroscopic neural 

activity have been attracted to this question. The spatial 

pattern of correlated whole brain activity recorded by 

fMRI, when participants are not performing any 

cognitive task, is called Default Mode Network (DMN). 

Recently, Hagman et al. measured the macroscopic brain 

structural connectivity by using Diffusion Spectrum 

Imaging (DSI). Honey and Sporns also showed that the 

structural connectivity could predict the connectivity of 

DMN [2, 3].  

We assumed that specific features of microscopic 

neuronal connectivity reconstructed from spike train data 

would also show a clear correspondence to structural 

connectivity as previous researchers had observed in 

macroscopic connectivity. For testing this hypothesis, 

first, we provided a new analysis technique for 

reconstructing the causal interactions from neuronal 

spikes recorded by a 512 electrode array [4, 5, 13]. 

Secondly, we separated the networks into several groups 

by using community detection analysis. Finally, we 

compared the estimated neuronal networks with cell-

distributions of dyed hippocampus substructures. As a 

result, in the test data, we succeeded in estimating the 

separation lines among neuronal groups of DG, CA3, and 

CA1 regions of the hippocampus.  

 This result suggests that the structural network and 

partition strongly constrains the causal interaction of 

spontaneous activity. 

 

 

2. Method 
 
2.1. Data acquisition 
 
All neural tissue from animals was prepared according 

to guidelines from the National Institutes of Health and 

all animal procedures were approved by the Indiana 

University Animal Care and Use Committee. 

Organotypic cultures were prepared following the 

method of [14], as previously described [15]. Briefly, 

brains from postnatal day 1 (P1)–P3 Sprague Dawley rat 

pups (Harlan) were removed under a sterile hood and 

placed in chilled Gey's balanced salt solution for 1 h at 

8°C. After 30 min, half the solution was changed. Brains 

were next blocked into ∼ 5 mm3 sections containing 

hippocampus and surrounding cortex. Blocks were then 

sliced into coronal sections with a thickness of 450 µm.  

Each slice was placed on a small circular cutout of 

permeable membrane (Millipore, Billerica, MA) that was 

then placed on top of a larger membrane that spanned a 

culture well. Culture medium consisted of HBSS (Sigma; 

H9394) 1:4, Mega cell medium (Sigma; M4067) 2:4, 

horse serum (Sigma; H1270) 1:4, and 4 mm glutamine, 

with penicillin/streptomycin 1:100 volume of media 

(Sigma; P4083). Slices were maintained at an interface 

between medium below and atmosphere above. The 

plates of wells were constantly maintained at 37°C in 

humidified atmosphere with 5% CO2. After 3 weeks the 

cultures were then gently placed on a microelectrode 

recording array by lifting the small circular cutout of 

membrane with tweezers. Each culture was placed tissue 

side down, with the membrane facing up. We attempted 

to place the tissue so that the hippocampus covered the 

array, with parts of adjacent cortex also included. During 

recording, cultures were perfused at 1 ml/min with 

culture medium that was saturated with 95% O2/5% CO2. 

Recording sessions lasted 2–7 h.  
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2.2. Data analysis 
 
2.2.1. Spike sorting 
 
     Sorting was done offline as previously described [15]. 

Briefly, signals that crossed a threshold of 3 SDs were 

marked, and the waveforms found on the marked 

electrode and its six adjacent neighbors were projected 

into five dimensional principal component space.  A 

mixture of Gaussians model was fit to the distribution of 

features based on maximum likelihood. Only the neurons 

that had well separated clusters in principal components 

space and had no refractory period violations were used 

in further analysis.  

Furthermore, we fitted Gaussian models for the 

Electrophysiological Image to detect the physical 

positions of neurons. This estimation is possible because 

of the high density positioning of electrodes (~60 µm).   

 

2.2.2. Reconstruction of causal interaction 
 
    In this section, we explain about the technique to 

reconstruct causal interaction or connectivity among 

neurons estimated by spike sorting technique. To 

estimate the connectivity, we need to define some 

quantity which measures the intensity of each connection. 

    Garofalo et al. compared the performance to estimate 

structural connectivity of neurons among Mutual 

Information (MI), Joint-Entropy (JE), Transfer Entropy 

(TE) methods, and Cross-Correlation (CC) [7]. Among 

them, TE showed the best detectability of causal 

interaction relating to the structural network [7]. 

Garofalo et al. evaluated the estimated connectivity 

structure in a mathematical model mainly. However, in 

their experimental system, the distance between 

electrodes was wide (~200µm), so the estimation of 

positions of cells was impossible in principle because the 

distance between neurons having local interaction is 

around several tens of microns [9]. Therefore, in their 

research, the comparison between the experimental 

results and results of mathematical modeling in the level 

of “cells” is an intrinsically difficult problem. In our 

system, the distance between electrodes is small (60 µm), 

allowing us to estimate the position of cells by 

calculating which electrode is closer to the position of 

the neuron (refer to method of spike sorting). Therefore, 

with this data it is possible to visualize the network of 

interactions among neurons. 

     Recently, our group also evaluated the performance of 

the estimation of structural connectivity among 

Izhikevich neuron models [4]. The result also confirmed 

the priority of TE consistently.  

   Equation (1) expresses the definition of TE [11]. 
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Here, 
ti or tj indicates the state of neuron i or j at time t. 

If a neuron i fired, the value is 1, and otherwise the value 

is 0. The shorthand notion like ( )k

ti means ( )1, ,n n ki i − +⋯ . 

Briefly speaking, this equation measures the deviation 

from Markov property ( ) ( ) )( ( ) )(1 1,
k l k

t t t t tp i i j p i i+ += . In other 

words, this equation measures the incorrectness of an 

assumption that the status of neuron j at time t has no 

influence on the transition of status of neuron i from time 

t to time t+1. 

     Between connected pair of neurons i and j, the causal 

dependency should be stronger than pairs of separated 

neurons. TE can be used to reconstruct the neuronal 

network  by using this causal relation of neuronal spikes 

in short time range (< 7 ms). 

 

2.2.3. Community detection analysis 
 
      The next step is the main part of the analysis: 

community detection. In this research, we show two 

different community detection techniques. The two 

techniques define communities by a global definition, or 

a local definition. 

     In the global definition, we prepare an optimization 

function. It is called “modularity”. The representative 

technique is the Girvan-Newman method [8]. The 

modularity of them is shown in the following equation:  
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In this equation, 

ik and 
jk are the degrees of the 

vertices and 1 2 ii
m k= ∑  is the total number of edges in 

the network.  

If the community in which node i belongs, is same as 

the community in which node j belongs, the Delta 

function  ( ),i jc cδ becomes 1, and if their communities 

are not same, the value is 0. If changing the border 

between communities, this value changes. Here 
ijA  

means the weight of the connection between nodes 

(neurons) i and j.  The 2i jk k m  means the expected 

value of the node i and node j. Therefore, 

2ij i jA k k m −   indicates how much more strongly the 

real graph is connected than a random graph. As a result, 

if the term becomes larger for a pair of nodes belonging 

in same community, Q becomes larger. In other words, if 

Q becomes larger, the pair of nodes connected well with 

each other will join a same community. Nodes connected 

densely to each other should be grouped together. 

Therefore, by maximizing the optimization function, we 

can estimate the best border for the weight matrix of the 

connectivity. The 4m at the top of the equation is used as 

the normalization factor to compare different structures 

of connection fairly. 
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Figure 1: k-cliques 
    The clique means fully connected network group, when 

defining community structure by using k-core technique. We 

regard the neurons connecting each other over some threshold 

number k as a community. 

 

A representative technique in local definition is the k-

clique technique [12]. This technique naturally expresses 

an empirical knowledge that the friend of a friend is also 

often a friend. Community in the k-clique technique is 

defined in a very strict sense as a community, all of 

whose members are connected to each other. This group 

is called clique. The k-core method allows us to define a 

group of friends by a milder definition such that, in one 

community, each node connected to at least k other 

nodes. We used the k-core technique with (k=4) to 

analyze our spike data. In this technique, the main 

parameter is only k, the size of the number of nodes 

connecting each other in a same community (Figure 1).  

 

 

  
Figure 2: Example results of community detection  
 (a) Anatomical image of the hippocampus [10]. (b) Circuit 

diagram of known axon pathways in hippocampus. (c) The 

communities classified by the k-core technique. (d) The 

communities classified by the Girvan-Newman technique. In 

figures (c), (d), the different colors mean that their groups are 

different. 

 

 

 

3. Results 
 
3.1. Reconstruction of causal interactions 
 

In this research, we reconstructed the directed 

connectivity graph by using Transfer Entropy. (Figure 2-

(a,c,d)). The graph told the structure of network can 

detect the abstract form of hippocampus.  
 
3.2. Community detection and anatomy 
 
     For extracting more detailed divisions, we applied 

two community detection techniques. The result of the k-

clique method succeeded in dividing between the 

hippocampus and the cortex clearly (Figure 2-(c)). 

Furthermore, the Girvan-Newman method succeeded in 

separating the internal structure within the hippocampus 

(CA1, CA3, and DG) (Figure 2-(d)). We could observe 

the anatomical correspondence with the illustration 

shown in figure 2-(b). 
 
3.3. Supplemental results 
 

In the community detection analysis, we can observe 

the structure in one spatial scale. However, the network 

architecture has multi-scale structure. Supplimentaly, as 

the primitive analysis, we introduce the result of 

distribution of the degree distribution of the network 

architecture. 

 

 

4. Discussion 
 
    In this research, we demonstrated the correspondence 

between the information-theoretical causal interactions 

among neurons reconstructed by using Transfer Entropy 

and neuronal structural connectivity. Particularly, we 

clarified that the community detection technique could 

visualize the dividing line between the cortex and the 

hippocampus as well as between CA1, 3, and DG. 

     We will introduce several current research topics 

relating to the concept of  �euronal Avalanche [1].   
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