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Abstract—A lattice model that supports highly mobile
discrete breathers (DBs) is investigated. In various nonlin-
ear lattices, DBs have mobility. However mobile DBs with
a constant velocity are not always realized. We propose
a symmetric lattice with respect to shifting a displacement
pattern to one lattice spacing. It is shown that DBs in the
proposed symmetric lattices travels much better than those
in Fermi-Past-Ulam (FPU) type lattice from an initial con-
dition with a standing DB with arbitrary perturbations.

1. Introduction

Discrete breathers (DBs) or intrinsic localized modes
(ILMs) have extensively attracted in nonlinear physics
since the first report by Sievers and Takeno [1]. DBs are
spatial localized modes that are excited in nonlinear lat-
tices. Recently, observations of DB in various physical sys-
tems [2, 3, 4, 5] have been reported. It is also expected that
DBs play critical roles in physical processes such as struc-
ture change in crystals [6].

It is usually observed that the DB travels in various lat-
tices. A center of the spatial localization moves from a
lattice site to a neighboring site with vibration frequency
out of phonon band. Although a mobile DB is easily ob-
tained in a numerical simulation, theoretical understand-
ing of mobile DB have not been clarified. Yoshimura has
reported that mobile DBs have finite tail in Fermi-Pasta-
Ulam-β (FPU-β) lattice [7]. The finite tail of mobile DBs
has also been reported in nonlinear Klein-Gordon [8] and
Salerno lattice [9].

In Ref.[7], the relation between a symmetry of an inter-
action potential and existence of the tail of mobile DB has
been pointed out. Moreover it has been reported that the
mobile DB with a arbitrary velocity can be constructed in
a four particle symmetric lattice that corresponds to a four
particle FPU-β lattice [10]. Therefore symmetric lattices
have importance for better understandings of dynamics of
mobile DBs. In the present paper, we propose a symmetric
lattice with N particles. Then we show numerical results of
mobile DB in the proposed symmetric lattice.

2. Symmetric Lattice

Let us consider a N-particle nonlinear lattice system.

H =
N∑

n=1

p2
n

2
+ Φ(q), (1)

where pn is the linear momentum and Φ(q) is the potential
defined by q = (q1, q2, ..., qN) or positions of particles.

Φ(q) =
1
4

N∑
n=1

(qn+1 − qn)4. (2)

This is the FPU-β lattice without linear interactions. Con-
sider a variable transformation from the physical space {qn}
to the complex normal mode space {Um}

qn =
(−1)n

√
N

N/2∑
m=−N/2+1

Um exp
(
i
2πm

N
n
)
. (3)

Since Φ(U) is invariant with respect to a uniform shift,
the total momentum is a first integral. Therefore, we can
assume UN/2 = U̇N/2 = 0 and neglect them. Substitut-
ing (3) into (2), we obtain a potential in terms of U =

(U−N/2+1,U−N/2+2, ...,UN/2−1),

Φ(U) =
1

4N

N/2−1∑
i, j,k,l=−N/2+1

ωiω jωkωlUiU jUkUl∆(i + j + k + l)

− 1
4N

N/2−1∑
i, j,k,l=−N/2+1

ωiω jωkωlUiU jUkUl

× (∆(i + j + k + l − N) + ∆(i + j + k + l + N)) ,
(4)

where ωm = 2 cos
(
πm
N

)
(m = −N,−N + 1, ...,N/2 − 1).

The function ∆(p) is defined as follows,

∆(p) =
{

1 if p = 0,
0 others. (5)

Let us consider a map Tλ : Um 7→ Um exp (−imλ) with
a real parameter λ. This map with λ = π/N corresponds to
shifting a displacement pattern to one lattice spacing and
reversing the phase in the physical space. The first term
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Figure 1: Strength of connection between d-th neighbor lat-
tice sites. Dashed line indicates the approximated function
bd/b1 = d−2.

of Eq.(4) is symmetric with respect to the map Tλ. The
second term of Eq.(4), on the other hand, is asymmetric
with respect to the map Tλ.

We define a symmetric lattice that has potential Φ con-
taining only symmetric terms with respect to the map Tλ.
The symmetric lattice can be obtained by eliminating the
asymmetric terms in the potential in terms of {Um} of
Eq.(4). Hamiltonian of the symmetric lattice in terms of
U can be written as

H =
1
2

N−1∑
m=−N+1

U̇mU̇−m + Φs(U), (6)

where

Φs(U) =
1

4N

N/2−1∑
i, j,k,l=−N/2+1

ωiω jωkωl

×UiU jUkUl∆(i + j + k + l). (7)

However, it is difficult to obtain a physically reasonable
lattice in physical space {qn} in general, since inverse trans-
formation of Eq.(3) might reproduce unphysical terms in
{qn}.

Let us consider a following lattice system for even N,

Φl(q) =
1
4

N/2∑
d=1

N∑
n=1

bd(qn+d − qn)4. (8)

where bd indicates strength of connection between d-th
neighbor lattice sites. We can obtain a physically reason-
able type of symmetric lattice for this model by choosing an
appropriate set of {bd} of Eq.(8). Fig. 1 shows the strength
of connection {bd} with various N. In the case of small d,
bd is approximately given by

bd = b1d−2. (9)

It is also found that bN/2 converges a finite value that is
function of N.

Figure 2: Temporal evolution of site energy of perturbed
DB in (a)FPU type lattice (2) and (b)symmetric lattice (8).

3. Numerical Results

We perform numerical simulations of temporal evolution
of a perturbed odd DB in the FPU-type (2) and the symmet-
ric lattice (8) with N=128 as shown in Fig. 2. In the case of
FPU-type lattice, we choose a set of parameters of b1 = 1
and bd = 0 (d , 1). In the case of the symmetric lattice,
we choose a set of parameters of bd , 0 for all indices in
order to eliminate terms in the transformed potential Φl(U)
of Eq. (8), that is asymmetric with respect to map Tλ.

Perturbations are added to momentum of the neighbor-
ing sites of the site with the maximum amplitude. It is ob-
served that the kicked DB in the FPU-type lattice looses
its velocity and energy. This is because the mobile DB in
the FPU-type lattice is affected by the discreteness of the
lattice. On the other hand, the kicked DB in the symmet-
ric lattice starts to traveling with a constant velocity. This
result indicates that the proposed model support highly mo-
bile DBs.

4. Conclusion

We propose the lattice model supporting highly mobile
DB by considering symmetry of the interaction potential.
The proposed model has all-to-all connections with a cer-
tain connection strength that eliminates asymmetric term
with respect to rotation map in the complex normal mode
coordinate. In numerical simulation, DB in the proposed
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lattice can move with a constant velocity even in the con-
dition that the DB in the FPU lattice looses its velocity and
energy. It is expected that the proposed model is a useful
model for investigation on mobile properties of DBs.

Acknowledgments

This work was partially supported by JSPS KAKENHI
Grant Number 24560074.

References

[1] A.J. Sievers and S. Takeno, ”Intrinsic localized modes
in anharmonic crystals,” Phys. Rev. Lett., vol.61,
pp.970–973, 1988.

[2] M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic,
D.A. Czaplewski and H. G. Craighead, ”Observation
of locked intrinsic localized vibrational modes in a
micromechanical oscillator array,” Phys. Rev. Lett.,
vol.90, 044102, 2003.

[3] M. E. Manley, D. L. Abernathy, N. I. Agladze and A.
J. Sievers, “Symmetry-breaking dynamical pattern and
localization observed in the equilibrium vibrational
spectrum of NaI,” Sci. Rep., vol.1, 4, 2011.

[4] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R.
Boyd and J. S. Aitchison, ”Discrete spatial optical soli-
tons in waveguide arrays,” Phys. Rev. Lett., vol.81,
pp.3383–3386, 1998.

[5] G. Kalosakas and S. Aubry, ”Polarobreathers in a gen-
eralized Holstein model,” Physica D, vol.113, pp.228–
232, 1998.

[6] T. Shimada, D. Shirasaki and T. Kitamura, ”Stone-
wales transformation triggered by intrinsic localized
modes in carbon nanotubes,” Phys. Rev. B, vol.81,
035401, 2010.

[7] K. Yoshimura and Y. Doi, “Moving discrete breathers
in nonlinear lattice: resonance and stability,” Wave Mo-
tion, vol.45, pp.83–99, 2007.

[8] S. Aubry, T. Cretegny, “Mobility and reactivity of dis-
crete breathers,” Physica D, vol.119, pp.34-46, 1998.
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