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Abstract—A lattice model that supports highly mobile
discrete breathers (DBs) is investigated. In various nonlin-
ear lattices, DBs have mobility. However mobile DBs with
a constant velocity are not always realized. We propose
a symmetric lattice with respect to shifting a displacement
pattern to one lattice spacing. It is shown that DBs in the
proposed symmetric lattices travels much better than those
in Fermi-Past-Ulam (FPU) type lattice from an initial con-
dition with a standing DB with arbitrary perturbations.

1. Introduction

Discrete breathers (DBs) or intrinsic localized modes
(ILMs) have extensively attracted in nonlinear physics
since the first report by Sievers and Takeno [1]. DBs are
spatial localized modes that are excited in nonlinear lat-
tices. Recently, observations of DB in various physical sys-
tems [2, 3, 4, 5] have been reported. It is also expected that
DBs play critical roles in physical processes such as struc-
ture change in crystals [6].

It is usually observed that the DB travels in various lat-
tices. A center of the spatial localization moves from a
lattice site to a neighboring site with vibration frequency
out of phonon band. Although a mobile DB is easily ob-
tained in a numerical simulation, theoretical understand-
ing of mobile DB have not been clarified. Yoshimura has
reported that mobile DBs have finite tail in Fermi-Pasta-
Ulam-g (FPU-B) lattice [7]. The finite tail of mobile DBs
has also been reported in nonlinear Klein-Gordon [8] and
Salerno lattice [9].

In Ref.[7], the relation between a symmetry of an inter-
action potential and existence of the tail of mobile DB has
been pointed out. Moreover it has been reported that the
mobile DB with a arbitrary velocity can be constructed in
a four particle symmetric lattice that corresponds to a four
particle FPU-g lattice [10]. Therefore symmetric lattices
have importance for better understandings of dynamics of
mobile DBs. In the present paper, we propose a symmetric
lattice with N particles. Then we show numerical results of
mobile DB in the proposed symmetric lattice.

2. Symmetric Lattice

Let us consider a N-particle nonlinear lattice system.

N p2
H=217n+®(q)’ (1)

where p, is the linear momentum and ®(q) is the potential
defined by q = (q1, ¢», ..., gn) or positions of particles.
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This is the FPU-p lattice without linear interactions. Con-
sider a variable transformation from the physical space {g,}
to the complex normal mode space {U,,}
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Since ®(U) is invariant with respect to a uniform shift,
the total momentum is a first integral. Therefore, we can
assume Uypp = UN/2 = 0 and neglect them. Substitut-
ing (3) into (2), we obtain a potential in terms of U =
(U-nj241: U-nj242, -, Unja-1),
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where w,, = 2cos (%) (m = -N,-N + 1,..,N/2 - 1).
The function A(p) is defined as follows,

1 if p=0,

0 others. )

A(p) = {

Let us consider a map 7, : U,, — U,,exp(—imd) with

a real parameter A. This map with 1 = n1/N corresponds to
shifting a displacement pattern to one lattice spacing and
reversing the phase in the physical space. The first term
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Figure 1: Strength of connection between d-th neighbor lat-
tice sites. Dashed line indicates the approximated function
by/by = d2.

of Eq.(4) is symmetric with respect to the map 7. The
second term of Eq.(4), on the other hand, is asymmetric
with respect to the map 7.

We define a symmetric lattice that has potential ® con-
taining only symmetric terms with respect to the map 7.
The symmetric lattice can be obtained by eliminating the
asymmetric terms in the potential in terms of {U,,} of
Eq.(4). Hamiltonian of the symmetric lattice in terms of
U can be written as

1\

H= E U, U_, + @,(U), (6)
m=—N+1
where
1 N/2-1
(DS(U) = 4— W;W jWiwy
ik =N/2+1

xUUUUAG + j+k + ). %)

However, it is difficult to obtain a physically reasonable
lattice in physical space {g,} in general, since inverse trans-
formation of Eq.(3) might reproduce unphysical terms in

{qn}-
Let us consider a following lattice system for even N,

| V2w
_ 2 PN

i) = 5 ; ;bmﬁd 4" ®)
where b, indicates strength of connection between d-th
neighbor lattice sites. We can obtain a physically reason-
able type of symmetric lattice for this model by choosing an
appropriate set of {b,} of Eq.(8). Fig. 1 shows the strength
of connection {b,} with various N. In the case of small d,
b, is approximately given by

by =bd>. )

It is also found that by, converges a finite value that is
function of V.
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Figure 2: Temporal evolution of site energy of perturbed
DB in (a)FPU type lattice (2) and (b)symmetric lattice (8).

3. Numerical Results

We perform numerical simulations of temporal evolution
of a perturbed odd DB in the FPU-type (2) and the symmet-
ric lattice (8) with N=128 as shown in Fig. 2. In the case of
FPU-type lattice, we choose a set of parameters of b; = 1
and b; = 0 (d # 1). In the case of the symmetric lattice,
we choose a set of parameters of b; # 0 for all indices in
order to eliminate terms in the transformed potential ®@;(U)
of Eq. (8), that is asymmetric with respect to map 7.

Perturbations are added to momentum of the neighbor-
ing sites of the site with the maximum amplitude. It is ob-
served that the kicked DB in the FPU-type lattice looses
its velocity and energy. This is because the mobile DB in
the FPU-type lattice is affected by the discreteness of the
lattice. On the other hand, the kicked DB in the symmet-
ric lattice starts to traveling with a constant velocity. This
result indicates that the proposed model support highly mo-
bile DBs.

4. Conclusion

We propose the lattice model supporting highly mobile
DB by considering symmetry of the interaction potential.
The proposed model has all-to-all connections with a cer-
tain connection strength that eliminates asymmetric term
with respect to rotation map in the complex normal mode
coordinate. In numerical simulation, DB in the proposed
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lattice can move with a constant velocity even in the con-
dition that the DB in the FPU lattice looses its velocity and
energy. It is expected that the proposed model is a useful
model for investigation on mobile properties of DBs.
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