
Associative Dynamics of Color Images in a Chaotic Neural Network

Makito Oku† and Kazuyuki Aihara†,‡

†Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

‡Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Email: oku@sat.t.u-tokyo.ac.jp

Abstract—
Recently, we have succeeded in numerically simulating

a large-scale chaotic neural network with 1 million units.
This success will open new possibilities for applications of
chaotic neural networks from the viewpoints of academic
interest as well as new media art. In this paper, we re-
port a way to deal with color images by using a large-scale
chaotic neural network. In the proposed method, color im-
ages are converted to binary sequences, modified slightly
by inverting some bits, and stored in the network. The re-
sults of numerical simulations show that chaotic alterna-
tions among stored patterns as well as their reverse patterns
can be observed within a certain range of parameters. We
also compare four different coding schemes of color infor-
mation, which changes the appearance of chaotic dynam-
ics.

1. Introduction

The recent development of computing technologies al-
lows us to handle much larger neural networks than be-
fore. One of the leading studies in this direction is the
“Blue Brain Project” [1]. The first subgoal of this project,
that is, the simulation of a single cortical column, has been
achieved; in this simulation, 10,000 biologically detailed
neuron models are used. On the other hand, Izhikevich
has performed a simulation of the entire neocortex and tha-
lamus by using 1 million neuron models that require few
computational resources but retain the realistic physiologi-
cal properties of neurons [2].

Last year, our group succeeded in simulating a large-
scale chaotic neural network with 1 million units [3]. A
characteristic feature of the chaotic neural network model
[4, 5, 6] is that the network’s state chaotically wanders
among multiple attractor states. The model is used for the
phenomenological modeling of the dynamical associative
memory or the endogenous perceptual alternation as well
as for efficient optimization methods [6, 7, 8, 9]. Although
large-scale chaotic neural networks have been investigated
in the context of optimization problem solving [10] or elec-
trical circuit implementation [11], no one has investigated
a large-scale dynamical associative memory model.

We found in our previous study [3] that the network
exhibits chaotic itinerancy among the stored patterns if

we preprocess the patterns to modify their statistics. We
also found that even an incompletely retrieved image—
the network output differs from the correct image at many
pixels—can evoke a clear perception of the original image.
Because of these features, a large-scale dynamical associa-
tive memory model will have new possibilities for applica-
tions from the viewpoints of academic interest as well as
new media art.

In this study, we store color images in the network and
investigate whether chaotic itinerancy occurs. In addition,
we are also interested in the appearance of the output of
the network. Since an associative memory model can store
only binary patterns, the conversion of color images to bi-
nary sequences is required. We first attempt the most sim-
ple and direct way of conversion and then carry out other
three conversion methods.

2. Chaotic Neural Network Model

First, we will explain the chaotic neural network model
[4, 5, 6]. In this study, we consider a recurrent neural net-
work with N units. The external input is constant in both
the time and the spatial domains. Each unit has two in-
ternal state variables ηi and ζi and one output variable xi.
If we adopt the vector representation, η = {η1, . . . , ηN}

T,
ζ = {ζ1, . . . , ζN}

T, and x = {x1, . . . , xN}
T, the system’s dy-

namics can be described as follows:

η(t + 1) = k fη(t) +Wx(t), (1)
ζ(t + 1) = krζ(t) − αx(t) + a, (2)
x(t + 1) = f (η(t + 1) + ζ(t + 1)). (3)

Here, W denotes the N ×N weight matrix; k f , kr ∈ [0, 1],
the time constants; α ≥ 0, the strength of the refractoriness;
and a, which is a vector of constant values a ≥ 0, the ex-
ternal input. The first internal state variable η changes in
response to the input from other units. The other internal
state variable ζ depends on the output of each unit. The
output x is defined by a nonlinear function of the summa-
tion of the internal state variables. Here, f is an operation
that applies the sigmoid function below to each element of
the argument vector:

f (y) = 1
1 + exp(−y/ε) . (4)

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 465 -



Next, we explain the associative memory model. In gen-
eral, the associative memory model has two phases: the
encoding phase and the retrieval phase. In the encoding
phase, K binary patterns s1, . . . , sK ∈ {−1, 1}N are given.
For simplicity, we assume that each pattern contains equal
numbers of 1 and −1. Then, the weight matrix is deter-
mined by the autocorrelation matrix of the patterns:

W = 1
K

K
∑

k=1
sk(sk)T. (5)

In the retrieval phase, one of the stored patterns with a
slight perturbation is given as an initial state. Then, the cor-
responding stored pattern is recovered in finite steps. This
phenomenon is called pattern completion. Each stored pat-
tern corresponds to an equilibrium point in the phase space.

The dynamical associative memory model differs from
the associative memory model in that the system’s state is
attracted to a stored pattern for a short period, but leaves
the pattern after a while, and then visits other patterns.
The chaotic neural network model exhibits such behavior
in some parameter regions. Neither the order of visiting
nor the duration of each stay is predictable although the
system’s dynamics is deterministic. This phenomenon is
called chaotic itinerancy.

Many previous works on the dynamical associative
memory model use approximately 100 units. In order to
perform large-scale simulations, one of the major prob-
lems is the requirement of a considerably large amount
of memory capacity for representing the weight matrix,
which increases in O(N2). However, the all-to-all connec-
tion regime used in the associative memory model has high
redundancy; even if we remove some of the network con-
nections, the qualitative property of the dynamics can be
retained. Therefore, we use a partially connected network
in our simulations. The weight matrix W = {w ji} is changed
as follows:

w ji =

{ 1
K
∑K

k=1 sk
j sk

i e ji ∈ E
0 otherwise , (6)

where e ji denotes a connection from unit i to unit j, and E
denotes the set of all the connections. Notice that if K is
even, we can get rid of the connections whose values are 0.

3. Conversion of Color Images to Binary Sequences

In our previous study [3], binary images of 1,000 ×
1,000 pixels were transformed to 106-dimensional vectors
by concatenating all rows and stored in the network. Al-
though binary images are useful for investigating the dy-
namical associative memory model, applications of the
model to multivariate images such as gray-scale images or
color images should be appreciated from a practical point
of view. Henceforth, we only consider color image pro-
cessing since the same techniques as those proposed here

can be applied to gray-scale images in a straightforward
manner.

The basic color image representation is RGB (red, green,
and blue). RGB values are normally represented by integer
values from 0 to 255. Each value is encoded in 8 bits; 24
bits represent the complete information of a pixel. By con-
catenating these 24-bit sequences, we can directly convert
the 24-bit RGB color images to binary sequences of length
24 × (the number of pixels).

The obtained binary sequences of 1 and 0 are trans-
formed to those of 1 and −1, and then their statistics are
adjusted by inverting the minimum number of bits (see Ta-
ble 1). This preprocessing balances the numbers of 1 and
−1 in each pattern as well as equalizes the amount of over-
laps among patterns.

In addition to the abovementioned conversion method,
we investigated two other color spaces. First, we investi-
gated YIQ, which is used by the TV system in the U.S. and
Japan. The YIQ values of an image are obtained from the
RGB values of the image by using the linear transformation
below [12]:




















Y
I
Q





















=





















0.2990 0.5870 0.1140
0.5957 −0.2745 −0.3213
0.2115 −0.5226 −0.3111









































R
G
B





















, (7)

where RGB values are rescaled from 0 to 1. Y ∈ [0, 1], I ∈
[−0.5958, 0.5957], and Q ∈ [−0.5226, 0.5226]. The first
component Y provides the luminance value, and the other
two components describe the chrominance information.

In our simulations, the YIQ values that are converted
from the original RGB values are rescaled from 0 to 255
and digitized. Then, we can obtain a 24-bit representation
per pixel as in the case of RGB images.

Next, we investigated HS V (hue, saturation, and value),
also known as HS B (hue, saturation, and brightness),
which is commonly used in image processing because it
is more natural to human vision. In the determination of
HS V, we consider a cylindrical coordinate because hue is a
circular quantity. Let M = max(R,G, B), m = min(R,G, B),
and C = M − m. If R , G , B holds (thus M,C , 0), the
HS V color space is defined as follows [13]:

H =



















60◦(G − B)/C mod 360◦ (M = R)
60◦(B − R)/C + 120◦ (M = G)
60◦(R −G)/C + 240◦ (M = B)

, (8)

S = C/V, (9)
V = M. (10)

In addition, S = 0 if C = 0, V , 0, and V = 0 if M = 0.
H ∈ [0◦, 360◦), S ∈ [0, 1], and V ∈ [0, 1]. Usually a certain
value is assigned if a value is undefined (H = 0 if C = 0, for
example). As in the case of the YIQ values, HS V values
are rescaled from 0 to 255 and digitized in our simulations
in order to obtain a binary representation.

We also investigated another encoding method. The
color space is RGB, but gray code is used instead of binary

- 466 -



Table 1: List of adjusted statistics of the stored patterns

Statistics Target value
∑N

i=1 sk
i 0

∑N
i=1 sk

i sl
i (k , l) 0.08N

∑N
i=1 sk

i sl
i sm

i (k , l , m) −0.08N

code for transforming the 0–255 integer values into 8-bit
binary sequences. In gray code, every pair of successive
values differs in only one bit. A binary code representation
of an integer n can be converted to a gray code representa-
tion by n ⊕ bn/2c, where ⊕ denotes an XOR operation.

Network output can be decoded in the opposite manner.
If the recovered RGB values are outside the specified range,
we reset the values larger than 255 to 255 and the negative
values to 0.

4. Simulations and Results

In the following simulations, we set k f = 0.8, kr = 0.9,
a = 6.4, α = 12, and ε = 0.015. Each unit receives input
from 100 units selected at random. These connections in-
clude those of value 0, which are removed before carrying
out the simulations. As an initial condition, ηi takes a ran-
dom value that is uniformly distributed in [0, 1], and ζi is
set to 0.

The source code of the program is written in the C pro-
gramming language with Message Passing Interface (MPI).
The program is run on a cluster of eight Linux server ma-
chines that have a single 3.2–3.6 GHz processor and 2.0
GB RAM each. It takes approximately 1 s to compute one
step of simulation.

First, we use four color images represented in RGB
space, as shown in Fig. 1, and convert them to binary se-
quences by using binary code. All images have 256 × 256
pixels. The RGB values range from 0 to 255. The number
of units, or the length of the binary sequences, is 1,572,864.

After the preprocessing, 1.1–3.9% (Ave. 2.6%) of the
bits in each binary sequence are inverted. The root-mean-
square (RMS) error per color component of a pixel is 0.67.

Figure 2 shows a typical time series of the decoded net-
work output. The four stored patterns as well as their re-
verse patterns are retrieved alternately. A few cycles of
oscillation between a stored pattern and its reverse one is
also observed.

To analyze the time series of the network output x(t), we
calculate the Hamming distances between the digitized net-
work output and the four binary sequences (see Fig. 3). The
downward and upward peaks correspond to the retrievals
of the stored patterns and the reverse ones, respectively. A
similar chaotic behavior is observed even in the run of 105

steps. The maximum Lyapunov exponent is estimated to
be 0.67.

Next, we apply the other three coding schemes: YIQ
space with binary code, HS V space with binary code, and
RGB space with gray code. After preprocessing, the RMS
error is 1.58, 1.23, and 0.70 for the YIQ, HS V, and gray
code cases, respectively. A chaotic behavior similar to the
previous case is observed in all the three cases. The appear-
ance of the retrieved images decoded from the network out-
put is also similar to that in the previous case for the stored
patterns, but qualitatively different for the reverse patterns
except in the YIQ case (see Fig. 4).

5. Discussions

The results of numerical simulations, as shown in Figs. 2
and 3, confirmed that chaotic alternations among stored
patterns as well as their reverse patterns can be observed
if we store color images in the network. The positive max-
imum Lyapunov exponent is another evidence for the ex-
istence of chaos, and the lifetime of chaotic behavior in
the considered network appeared to be significantly longer
than that of a smaller network [6].

Figure 1: Original color images for stored patterns. From
left to right, “Mandrill”, “Lena”, “Peppers”, and “Tree”.

Time

Figure 2: An example of time series of the decoded net-
work output displayed with 10 step intervals.

- 467 -



In addition, it appeared that the color images decoded
from the network output, as shown in Fig. 2, can evoke a
clear perception of the original images. These observations
are also consistent with the results of our previous work in
which binary images were used as stored patterns [3].

We found that the use of different color coding schemes
can change the appearance of chaotic dynamics, as shown
in Fig. 4. This would be because the bit-wise reverse opera-
tion may have a qualitatively different effect under different
coding schemes in general case.

The reason why YIQ does not change the appearance
can be explained as follows. To rescale the YIQ values
obtained by using Eq. 7, we multiply these values with a
scaling matrix and add a translation vector. The reverse op-
eration applied to the rescaled values has the same effect as
in RGB space. The same is true for few other linear trans-
formations of RGB space such as YUV and I1I2I3. How-
ever, a linear transformation in general does not have such
a property.

0 200 400 600 800 10000
0.5´106
1.0´106
1.5´106

M
an

dr
ill

0 200 400 600 800 10000
0.5´106
1.0´106
1.5´106

Le
na

0 200 400 600 800 10000
0.5´106
1.0´106
1.5´106

Pe
pp

er
s

0 200 400 600 800 10000
0.5´106
1.0´106
1.5´106

Tr
ee

Time steps

Figure 3: The Hamming distances between the digitized
network output and the four binary sequences.

Figure 4: Reverse patterns for different encoding schemes.
From left to right, RGB with binary code (used in Figs. 2
and 3), YIQ with binary code, HS V with binary code, and
RGB with gray code.

6. Conclusion

In conclusion, we stored 24-bit RGB color images of
256×256 pixels in a large-scale chaotic neural network
with approximately 1.6 million units. To convert the color
images represented by integer values from 0 to 255, we
used an 8-bit binary representation. We observed chaotic
alternations among the stored images as well as their re-
verse images. We also found that the use of different color
coding schemes could change the appearance of chaotic dy-
namics. Finally, as the future work, we plan to store as
many images as possible in the network.

Acknowledgments

This research is partially supported by the Japan Soci-
ety for the Promotion of Science, a Grant-in-Aid for JSPS
Fellows (21·937).

References

[1] H. Markram, Nat. Rev. Neurosci., 7:153–160, 2006.

[2] E. M. Izhikevich and G. M. Edelman, Proc. Natl.
Acad. Sci. U.S.A., 105:3593–3598, 2008.

[3] M. Oku, K. Iwayama, K. Tokuda, H. Suzuki, and
K. Aihara, IEICE Technical Report, 109(269):55–59,
2009 (in Japanese).

[4] K. Aihara, in Bifurcation phenomena in nonlinear
systems and theory of dynamical systems, edited by
H. Kawakami (World Scientific, Singapore, 1990)
pp. 143–161 .

[5] K. Aihara, T. Takabe, and M. Toyoda, Physics Letters
A, 144(6-7):333–340, 1990.

[6] M. Adachi and K. Aihara, Neural Netw, 10:83–98,
1997.

[7] L. Chen and K. Aihara, Neural Netw., 8(6):915–930,
1995.

[8] N. Nagao, H. Nishimura, and N. Matsui, Neural Pro-
cessing Letters, 12(3):267–276, 2000.

[9] Y. Kakimoto and K. Aihara, New Mathematics and
Natural Computation, 5(1):123–134, 2009.

[10] M. Hasegawa, T. Ikeguchi, and K. Aihara, Neural
Netw., 15:271–283, 2002.

[11] Y. Horio, K. Aihara, and O. Yamamoto, IEEE Trans.
Neural Netw., 14(5)1393–1404, 2003.

[12] P. Shih and C. Liu, Int. J. Pattern Recogn. Artif. In-
tell., 19(7):873–894, 2005.

[13] A. Smith, ACM SIGGRAPH Computer Graphics,
12(3):12–19, 1978.

- 468 -


	Navigation page
	Session at a glance
	Technical program

