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Abstract– We have recently shown that speech signal 

degradation can be used to quantitatively predict average 

Parkinson’s disease (PD) symptom severity, which is 

typically evaluated on the Unified Parkinson’s Disease 

Rating Scale (UPDRS). In this study, we demonstrate the 

potential of wavelets to reveal changes in fundamental 

frequency variations with PD progression. We develop a 

set of new measures based on wavelets, energy, and 

entropy, which form robust indicators of the UPDRS. 

These results demonstrate that PD leads to dissimilar 

speech patterns in males and females, tentatively taken to 

indicate different patho-physiological mechanisms. 

 

1. Introduction 

 
Parkinson’s disease (PD) is a neurodegenerative disorder 

affecting approximately 100 people for every 100,000 in 

the population [1]. Since the probability for PD onset 

increases steeply over the age 50 [2] and given that the 

population worldwide is growing older, these estimates 

could increase further in the near future. Although PD is 

progressive and ultimately fatal, pharmacological and 

surgical treatments are available to alleviate some of the 

symptoms and slow down disease progression. Therefore, 

to optimize treatment, early diagnosis and frequent PD 

progression tracking are essential [3]. PD symptoms 

include tremor, rigidity and general deterioration of 

muscle control. The diagnosis of Parkinsonism is given 

when these symptoms can be attributed to neurotoxins or 

drugs; when the aetiology is unknown, the disease is 

termed idiopathic.  

At present, PD symptoms are physically assessed by 

clinical experts using empirical tests and guidelines. The 

clinical rater’s assessment is typically expressed using the 

gold standard metric Unified Parkinson’s Disease Rating 

Scale (UPDRS) [4]. For untreated patients the UPDRS 

spans the numerical range 0-176, with 0 representing 

symptom-free (healthy person) and 176 total disability. 

The UPDRS consists of three components: (1) Mentation, 

Behavior and Mood; (2) Activities of daily living; and (3) 

Motor (muscular control). Collectively, the three 

components are known as total UPDRS. The third 

component is known as motor UPDRS, and ranges from 

0-108, with 0 indicating no motor symptoms and 108 

denoting total lack of motor control. The UPDRS 

assessment by clinical experts is costly to national health 

systems relying on human expertise, and often 

cumbersome to patients who have to physically visit the 

clinic over regular intervals. These factors impose the 

need for accurate, objective, remote tracking of average 

PD symptom severity. 

Degraded speech performance has been qualitatively 

related with PD at least since the beginning of the 1960s 

[3], however, only recently strong evidence has emerged 

linking speech degradation with PD progression [5], [6]. 

Those studies prompted us to investigate the statistical 

mapping of a range of classical speech signal processing 

algorithms (known as dysphonia measures in the jargon of 

the speech literature) to UPDRS [7], [8]. In this study, we 

explore the effectiveness of wavelets to reveal changes in 

fundamental frequency variations with PD progression.    

 

2. Methods 

 

2.1. Data 

 

We used data from the original study of Goetz et al., in 

which 52 subjects with idiopathic PD diagnosis within the 

past five years were recruited to a clinical trial [6]. 

Subjects were given a PD diagnosis if they had at least 
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two of the following symptoms: rest tremor, bradykinesia 

or rigidity, with no evidence of Parkinsonism. Their 

symptom severity was expressed using the UPDRS at 

three intervals: baseline, three-months and six-months into 

the trial. The recruited subjects were followed for six 

months during which they were asked to complete a series 

of tests weekly, using the Intel At Home Testing Device 

(AHTD). Among these tests, the subjects were required to 

sustain the vowel ‘ahh …’ for as long as possible and as 

steadily as possible. Four sustained vowel phonations 

were recorded at a level of loudness that was comfortable 

for the subject and two at twice the level of loudness that 

was comfortable on each day the recruits took the test. We 

used data from subjects that had completed at least 20 

valid study sessions. Table 1 summarizes the details of the 

42 PD subjects used in this study. After initial screening to 

remove flawed phonations (too short, patient coughing), 

we processed 5,875 signals using dysphonia measure 

signal processing algorithms implemented in the Matlab 

software package. 
 

Table 1: Summary of the AHTD data 

 
MALES (28 

subjects) 

FEMALES (14 

subjects) 

Age (years) 64.8 ± 8.1 63.6 ± 11.6 

Weeks since PD 

diagnosis 
63.0 ± 61.9 89.7 ± 81.2 

Motor-UPDRS 

(baseline, 

3-months, 

6-months) 

20.3 ± 8.5 

21.9 ± 8.7 

22.0 ± 9.2 

17.6 ± 7.4 

21.2 ± 10.5 

20.1 ± 9.4 

Total-UPDRS 

(baseline, 

3-months, 

6-months) 

27.5 ± 11.6 

30.4 ± 11.8 

31.0 ± 12.4 

24.2 ± 9.1 

27.4 ± 12.1 

26.8 ± 10.8 

Figures are given in the form mean ± standard deviation. 

 

2.2. Discrete wavelet transform and wavelet 

decomposition 
 

Wavelets have the property of quantifying regularity 

effects (scale aspects) and transient processes (time 

aspects), qualities which make them well suited for 

detecting scale and time deviations from an expected 

pattern. The rationale is that a healthy person is expected 

to be able to sustain a vowel with minimal deviation from 

exact periodicity, whilst people with pathological voices 

cannot [9]. Moreover, wavelet decomposition is well 

adapted to the study of fractal properties and self-

similarity of signals, properties of speech signals used 

previously in developing dysphonia measures [10]. 

The discrete wavelet transform (DWT) expresses the 

initial signal using approximation and detail coefficients. 

The wavelet decomposition then is successive expressing 

the approximation coefficients using subsequent layers to 

extract new approximation and detail signals. The layers 

of the wavelet decomposition are known as levels. 

Practically speaking, the resulting wavelet coefficients can 

be thought of as similarity (resemblance) indices between 

the selected wavelet and the signal in each level, where 

large coefficients denote large resemblance. For more 

details regarding wavelets we refer to [11]. 

 

2.3. Extracting features based on wavelets 

 

 As a first pre-processing step, we extracted the 

fundamental frequency �� from each of the 5,875 signals. 

Algorithms extracting �� focus on a time window of the 

original signal (the window can be either pre-specified, or 

it can be determined by the �� algorithm, e.g. using zero-

crossing). Then, for each of those windows, the �� is 

estimated giving an �� series vector. There are many 

algorithms to compute ��  and this is in itself a topic of 

intense research [12]; in this study, we used the robust 

RAPT algorithm [13]. Then, the input signal vector for 

wavelet processing is the �� series.  

 We applied wavelet decomposition of the �� series in 10 

levels, and extracted the wavelet coefficients 

experimenting with three wavelet families (Daubechies, 

Symlets, Coiflets). Then, we computed the energy, 

entropy (using both Shannon’s and the log energy 

definitions), and the Teager-Kaiser Energy Operator 

(TKEO) for the wavelet coefficients at all levels. The 

TKEO can be thought of as a nonlinear measure of energy, 

taking into account both the amplitude and the frequency 

of the input signal (in this case the wavelet coefficients). It 

was first proposed in [14] and is defined as: 

             ����� 	 ��
 � ���
 · ���
 (1) 

where n denotes the index of the input vector. Then, the 

TKEO vector gives rise to two features using its mean and 

its standard deviation for each level. Recently, Little et al. 

have shown that the transformation of the fundamental 

frequency into its logarithmic perceptual semitone can 

enhance robustness to confounding factors such as smooth 

vibrato prior to further processing [15]. Therefore, in 

addition to the features extracted using the raw ��series, 

we computed the log transform of the ��series and then 

followed the methodology already outlined to obtain 

additional features.  

 The results of all the algorithms using both the raw �� 

series and the log transformed �� series are appended in a 

feature vector, which is used to characterize each 

phonation. Essentially, the feature vector reduces the 

initial vector space with elements equal to the length of 

the �� series to a reduced space, where each element of 

the feature vector space can be thought of as a distinctive 

feature. This process was repeated for all the 5,875 

phonations where each phonation was characterised by 

180 features, resulting in a 5,875×180 design matrix. 

 

2.4. Statistical mapping 

 

 The UPDRS values in the AHTD study were obtained at 

baseline, three-month and six-months, whilst the voice 

recordings were obtained at weekly intervals; therefore we 
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used a straightforward piecewise linear interpolation to 

obtain weekly motor-UPDRS and total-UPDRS scores. In 

doing so, we assumed that the UPDRS did not fluctuate 

wildly within the three-month intervals between the actual 

assessments by clinical experts. We have argued in [7], [8] 

that linear UPDRS progression is the physiologically most 

plausible disease course on average, an assertion 

supported by other recent studies on early PD [16], [17]. 

 Using the interpolated UPDRS scores, we have the 

classical supervised learning problem where we want to 

develop a learner maximizing the accuracy of predicting 

the response variable y (UPDRS) given the features X 

(wavelet vector). We have used Breiman’s Random 

Forests (RF) [18], a powerful, nonlinear, non-parametric 

learner for the statistical mapping of features to UPDRS. 

 

2.5. Feature selection 

 

The use of a large number of features can potentially 

lead to poor population of the feature space occluding the 

detection of relevant patterns useful to predict the 

response variable. This well known problem is known as 

the curse of dimensionality, and is typically addressed by 

either transforming the initial feature space M into a new 

space m (where m < M), or by selecting K of the initial 

features in the M-dimensional feature space (m or K are 

determined by trial and error, e.g. using cross-validation). 

One of the advantages RF have over alternative learners, 

is that they rank features internally as an integral part of 

the statistical mapping process, effectively acting as 

feature selection wrappers. Therefore, we used the ranked 

sequence of features to decide on the most parsimonious 

model with performance within one standard error from 

the optimal (as defined in section 2.6). 

 

2.6. Model validation (cross-validation) 
 

The generalization performance of the proposed model 

was assessed using 10-fold cross validation with 100 runs. 

In each run, we randomly split the N phonations (4,010 for 

males and 1,865 for females). The training set comprises 

0.9·N phonations and the testing set comprises 0.1·N 

phonations. We assess the performance of the learning 

scheme using the mean absolute error (MAE): 

             ��� 	 1
�� ���� � ������

 (2) 

where �� is the true UPDRS value, ���  is the predicted 

value, and L is the number of phonations in the dataset 

denoted by Q, containing the indices of the particular set 

in each cross-validation run. The MAE over all cross-

validation runs was averaged. 

 

3. Results 

 

Having extracted the �� series vector, we have 

experimented using different wavelet families in the DWT 

step. We found that the wavelets from the Daubechies, 

Coiflet and Symlet families had similar performance. The 

out of sample MAE results are summarized in Table 2, 

and were obtained using the dysphonia measure subsets of 

Table 3 and the Symlet 4 wavelet. 

 
Table 2: Out-of-sample mean absolute error (MAE) results 

Motor 

UPDRS 

males 

Total 

UPDRS 

males 

Motor 

UPDRS 

females 

Total 

UPDRS 

females 

5.36 ± 0.34 6.93 ± 0.36 4.72 ± 0.38 5.47 ± 0.51 
Figures are given in the form mean ± standard deviation. 

 
Table 3: Feature subsets selected using the Random Forests’ 

internal feature ranking property 

Males Females 

Log entropy 3
rd

 detail coef. 

Log entropy 2
nd

 detail coef. 

Log entropy 1
st
 detail coef. 

Log entropy 4
th

 detail coef. 

Shannon entropy 2
nd

 

approximation coef. 

Shannon entropy 1
st
 

approximation coef. 

Log entropy 5
th

 detail coef. 

Shannon entropy 3
rd

 

approximation coef. 

Shannon entropy 4
th

  

approximation coef. 

Log entropy 3
rd

 detail coef. 

(with prior �� transform) 

Log entropy 3
rd

 detail coef. 

Log entropy 2
nd

 detail coef. 

Shannon entropy 1
st
 

approximation coef. (with 

prior �� transform) 

Shannon entropy 3
rd

 

approximation coef. (with 

prior �� transform) 

Log entropy 1
st
 detail coef. 

Log entropy 4
th

 detail coef. 

Shannon entropy 2
nd

 

approximation coef. (with 

prior �� transform) 

Mean TKEO 4
th

 detail coef. 

(with prior �� transform) 

Energy 4
th

 detail coef. (with 

prior �� transform)   

Shannon entropy 2
nd

  

approximation coef. 

 

4. Discussion 

 

 We have introduced a number of new measures based on 

the use of wavelets to investigate how speech performance 

degradation can be mapped to UPDRS. We focused on the 

analysis of the fundamental frequency because this is the 

single most important characteristic of speech [9], and our 

previous exploration of the AHTD database [7], [8] has 

confirmed studies’ reporting that �� is adversely affected 

in PD. Our findings demonstrate that the new measures 

enable replicating the clinical raters’ assessments to within 

7 UPDRS points for males and within 5.5 UPDRS points 

for females. This is notable improvement over previous 

results in [7] and [8] where we used broadly accepted 

speech signal processing algorithms. 

 The notable difference observed between the UPDRS 

estimation performance in males and females suggests 

that patterns associated with �� may be more indicative of 

PD in female subjects, an argument supported by other �� 

related measures in the AHTD database. Given that higher 

fundamental frequencies tend to have lower perturbations 

[19], and that women have on average higher �� [9], it is 

plausible that failure to sustain ��  periodicity indicates 
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pronounced voice pathology in females whilst similar 

deviation from �� periodicity could be (at least partly) due 

to normal vibrato in males. Furthermore, studying Table 3 

we can tentatively deduce interesting insights on the most 

useful PD patterns for both genders. One particularly 

interesting characteristic is that many of the features in the 

selected subset for females stem from prior log-

transformation of the ��. 

 The results of this study support the argument that 

features extracted based on wavelets are competitive 

alternatives to the classical dysphonia measures which are 

currently widely used to analyse dysphonic speech signals. 
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