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Abstract – A new approach to construct the measurement 
matrix in compressive sensing is proposed. In this 
approach, a circulant matrix is first generated by a 
modified cat map and a random sequence. Then it is 
optimized through solving the problem of sparse 
optimization and becomes the measurement matrix used in 
compressive sensing. The proposed measurement matrix is 
compared with the Bernoulli and chaos-based random 
measurement matrices before and after optimization. The 
results show that our construction method leads to a higher 
reconstruction fidelity. 
 
1. Introduction 
 

According to the Nyquist-Shannon theorem[1], a signal 
cannot be exactly recovered from its discrete samples 
unless the sampling frequency is at least two times the 
highest signal frequency. However, this is not necessary if 
some high frequency components are ignored after the 
sampled signal has been compressed. 

Recently, a new sampling theory called compressive 
sensing (CS) was proposed by Candes et al.[2-5] and 
Donoho[8] independently. Its principle is that a smaller 
measurement matrix can be used to sample a sparse signal 
in order to extract the significant information of this 
sparse signal only. The exact reconstruction of the sparse 
signal is guaranteed if some conditions are satisfied. In 
this way, the measurement matrix is far smaller than that 
required by the Nyquist-Shannon theorem. 

The core of CS is that sampling and compression can 
be performed at the same time. The measurement matrix 
used in the sampling process needs to be incoherent with 
the sparse transform basis of the signal. More formally, 
the Restricted Isometry Property (RIP) must be satisfied 
[6]. It is well-known that a random matrix is incoherent 
with almost any matrices and it satisfies the RIP criterion 
with a high probability. 

According to the above criteria, various methods for 
constructing the measurement matrix have been 
suggested. They can be divided into three categories. The 
first one includes Bernoulli random measurement 
matrix[7-9], very sparse random projection matrix[10], etc. 
The elements in these matrices are independent but follow 
a certain distribution. Their size is very small but the 
computational complexity is high. The second category 
consists of the partial Fourier matrix[5,11], non-relevant 
measurement matrix[12], etc. These matrices are generated 

through extracting the rows of an orthogonal matrix. 
These algorithms are faster than those belonging to the 
first category. However, they are incoherent with most 
sparse signals. The final category includes binary sparse 
matrix[13], structurally random matrix[12], chirp 
measurement matrix[14], etc. This kind of matrices has a 
certain kind of deterministic structure. The time required 
for generating the measurement matrix and reconstructing 
the original signal is shorter than that of the other two 
kinds. However, the quality of the recovered signal is not 
satisfactory. 

In this paper, an approach for constructing a 
measurement matrix having the advantages of those in the 
first and the third categories is proposed. In particular, a 
circulant matrix satisfying RIP is constructed using a 
uniformly-distributed sequence generated by a modified 
cat map. Then, the matrix is optimized to enhance the 
reconstruction fidelity through solving the sparse 
optimization problem. 

The main contribution of this work is the establishment 
of a connection between CS and the chaotic cat map. The 
performance of the suggested approach with and without 
optimization is compared with that of Bernoulli and 
chaotic measurement matrices on the reconstruction 
fidelity. The experimental results justify that the proposed 
measurement matrix leads to a better reconstruction than 
the other two matrices.  This paper is organized as follows. 
In Section II, the proposed method for constructing the 
measurement matrix is introduced. The approach to 
optimize the matrix generated by the modified cat map 
and the property of the resultant matrix are analyzed in 
Section III. Simulation results are presented in Section IV. 
The final section concludes our work. 
 
2. Construction and Optimization of Measurement 

Matrix 
 
2.1. Matrix Construction 
 

The classic cat map was proposed by Arnold and 
Avez[15]. It has been widely used in image encryption as it 
can re-distribute all pixels of the original image to make 
the image noise-like and unrecognizable. The cat map is 
governed by the following equation: 

1

1

1
mod

1
i i

i i

x xa
n

y yb ab




    
        

                (1) 

- 389 -

2014 International Symposium on Nonlinear Theory and its Applications
NOLTA2014, Luzern, Switzerland, September 14-18, 2014



   

where ( , )i ix y  is the coordinate of a pixel in the original 

image, 1 1( , )i ix y   is the coordinate of the corresponding 

pixel in the encrypted image. The image size is n×n while 
a and b are the cat map parameters. The determinant of 

the matrix 
1
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a

b ab

 
  

 is 1 to guarantee the property of 

one-to-one mapping. 
Equation (1) suggests that the image is a square one. 

However, the measurement matrix used in CS is not a 
square matrix. Therefore, the cat map should be modified 
in the following way to construct the circulant matrix. 
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where ( ' , ' )i ix y  is the coordinate of the original matrix 

element, 1 1( ' , ' )i ix y   is its new coordinate. The size of 

the measurement matrix is m×n. Equation (2) can be 
expressed as 
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To construct the measurement matrix nmR  , a 
source with uniform distribution is chosen to generate a 
random sequence  nzzzZ ,,, 21  . Then the matrix   is 

constructed row-by-row using this sequence.  
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After that, the matrix  is permuted by the modified cat 
map according to Eq. (3) Then the permuted matrix  is 
obtained and the measurement matrix  is constructed by 
the following equation 

1 2 1

1 1 2

2 1 3

1 2 3

1 1

n n

n n n

n n n n

n m n m n m n m mn

z z z z

z z z z

z z z z
p p

z z z z



 

  

      

 
 
 
     
 
 
 
 





    


      (5) 

where p is a parameter. 
 
2.2. Matrix Optimization 
 

In CS, the coherence between the measurement matrix 
  and the transform basis   determines the sparse 
boundary of the given signal, as given by 
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where x is a sparse matrix and mx  is the coherence.  

In effective compressive sampling, low coherence leads 
to high quality of the reconstructed signal. Therefore, we 
reduce the coherence between the measurement matrix 
and the transform basis through solving the sparse 
optimization problem [16]. The coherence is the value of 
the largest elements in the Gram matrix constructed by the 
measurement matrix and the transform basis, as defined 
by 

,1 ,maxmx i j i j n ijg                            (7) 

where ijg  is the element on the ith row and the jth column 

of the Gram matrix T TG     . 
When the coherence[17-22] is the smallest, it follows 

from Eq. (7) that the ideal Gram matrix is an identity 
matrix, i.e., 
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Before the measurement matrix is optimized, the Gram 
matrix will be initialized. The gap between the initial 
Gram matrix and the identity matrix can be narrowed by 
iterations through the unitary constant paradigm. Thus, 
the optimization of the initial measurement matrix can be 
realized. 

However, due to the intrinsic characteristics of the 
identity matrix, it is very difficult to make the initial Gram 
matrix constantly approximate the identity matrix. It is 
necessary to relax the criteria in order to construct a more 
reasonable ideal matrix, such as the following one:  
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where 'G  is an n×n symmetric matrix and   is the 

threshold value such that max 'i j ijg   . 

The procedures for optimizing the measurement matrix 
are described as follows. Firstly, the measurement matrix 
and the transform basis are utilized to construct the Gram 
matrix: 

D                                     (10) 
DDDG T 2   .                             (11) 

Secondly, an identity matrix is initialized as a Gram 
matrix 'G , which is further updated according to Eq. (12). 
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Finally, optimize and update the measurement matrix 
  using the criterion stated in Eq. (13). 

2
min '

F
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Then we can obtain 
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where   is the iteration step size. 
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Through the optimization method, the coherence 
between the measurement matrix and the transform basis 
can be effectively reduced. 
 
3. Properties of the Measurement Matrix 
 

It is widely known that there are two criteria in 
constructing the measurement matrix: RIP and the 
incoherence between the measurement matrix and the 
transform basis. The original signal x can be reconstructed 
using the sparse decomposition algorithm when the 
measurement matrix   and the transform basis   
satisfy RIP, as given by 

2 2 2

2 2 2
(1 ) (1 )k kA A A                    (15) 

where k  is an iso-volumetric constant with range 

(0,1)k  and A x  . 

However, RIP is difficult to prove and so the 
incoherence is put forward. The sparse boundary of the 
signal under sampling is determined by the coherence. 
The more the non-zero coefficients the sparse matrix x  
contains, the more significant the information content that 
the measured signal y possesses. The fidelity of the 
reconstructed signal is also higher. According to Eq. (6), 
the bigger the sparse boundary of the original signal x, the 
less the coherence is. 

The range of the coherence   is given by: 

[0,1]                                    (16) 

The measurement matrix constructed by the proposed 
method satisfies the two criteria, as determined by   in 

the optimization process. 
 
4. Simulation Results 
 

The proposed method for constructing the measurement 
matrix with the modified cat map and a uniformly- 
distributed source is realized using Matlab. In the 
experiment, the 256×256 Lena image is selected as the 
test image while Discrete Wavelet Transform (DWT) is 
chosen as the sparse transformation. The uniformly- 
distributed source is employed to generate the random 
sequence which is used in the construction of the 
measurement matrix. The parameter settings are p=10, 
μ=0.2 and β=0.01. Optimization of the measurement 
matrix is achieved by the iterative computation. The 
signal reconstruction algorithm is Optimal Matching 
Pursuit (OMP) which ensures a better reconstruction 
performance at a smaller number of iterations. 

Moreover, Bernoulli and chaotic measurement matrices 
are constructed to compare with the proposed 
measurement matrix. According to [2, 23], the general 
construction methods for these two measurement matrices 
are, respectively, 
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Chaotic measurement matrix: use the logistic sequence 
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Ten experiments for each of the three kinds of 
measurement matrix at different sampling rates have been 
conducted. The average Peak Signal-to-Noise Ratio 
(PSNR) value is employed to evaluate the quality of the 
reconstructed image. The results before and after 
optimization are plotted in Fig. 1(a) and (b), respectively. 

 
(a) 

 
(b) 

 
Fig. 1 Reconstruction PSNR (dB) for the three types of 
measurement matrices (a) before, and (b) after 
optimization. 

 
As observed from Fig. 1, the measurement matrix 

constructed by the modified cat map results in a higher 
PSNR at all sampling rates with and without optimization. 
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When the width m of the measurement matrix is 180, the 
average time for generating the Bernoulli and chaotic 
measurement matrices without optimization are 
respectively 8.57s and 7.90s. It takes only 7.29s using our 
approach which is shorter than that required by the other 
two comparative schemes. These results justify the 
superiority of the proposed method. 
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