
Introducing the truly chaotic finite state machines and theirs applications in
security field

Christophe Guyeux†, Qianxue Wang‡, Xiaole Fang§ and Jacques M. Bahi†

†Femto-St Institute, University of Franche-Comté, France
‡College of Automation, Guangdong University of Technology, China

§Land and Resources Technology Center of Guangdong Province, China
Email: christophe.guyeux@univ-fcomte.fr, wangqianxue@gdut.edu.cn, xiaole.fang@gmail.com,

jacques.bahi@univ-fcomte.fr

Abstract—The truly chaotic finite machines introduced
by authors in previous research papers are presented here.
A state of the art in this discipline, encompassing all pre-
vious mathematical investigations, is provided, explaining
how finite state machines can behave chaotically regarding
the slight alteration of their inputs. This behavior is ex-
plained using Turing machines and formalized thanks to a
special family of discrete dynamical systems called chaotic
iterations. An illustrative example is finally given in the
field of hash functions.

1. Introduction

The use of chaotic dynamics in cryptography is often
disputed as a finite state machine is reputed to always en-
ter into a cycle. Even though such a regular behavior is
not completely opposed to almost all definitions of chaos
in mathematics, constituting a kind of border situation in
case of discrete sets, this situation appears as problematic
to cryptologists that consider periodic dynamics and chaos
as antithetical. This problem can be solved by introducing
truly chaotic finite machines. Our proposal is to constitute
them, that is, finite machines that can be rigorously proven
as chaotic, as defined by Devaney [4], Knudsen [7], and so
on. The key idea is to consider that the finite machine is
not separated from the outside world but that it must inter-
act with it in order to be useful. At each iteration, the new
input provided to the finite machine can be used together
with its current state to produce the next output. By doing
so, the finite machine iterates on the finite cartesian prod-
uct of its possible states multiply by all the possible inputs.
This idea is formalized theoretically using Turing machines
and explained practically thanks to the so-called chaotic it-
erations. An example of use is finally provided in the field
of hash functions.

2. The So-called Chaotic Iterations

Our proposal in creating chaotic finite machines is to
take a new input at each iteration. This process can be re-
alized using a tool called chaotic iterations.

2.1. Review of Basics

In the whole document, to prevent from any conflicts and
to avoid unreadable writings, we have considered the fol-
lowing notations, usually in use in discrete mathematics:
• The n−th term of the sequence s is denoted by sn.
• The i−th component of vector v is vi.
• The k−th composition of function f is denoted by f k.

Thus f k = f ◦ f ◦ . . . ◦ f , k times.
• The derivative of f is f ′.
P(X) is the set of subsets of X. On the other hand B

stands for the set {0; 1} with its usual algebraic structure
(Boolean addition, multiplication, and negation), while N
and R are the usual notations of the following respective
sets: natural numbers and real numbers. XY is the set of
applications from Y to X, and thus XN means the set of
sequences belonging in X. We will use the notation bxc
for the integral part of a real x, that is, the greatest integer
lower than x. Finally, Ja; bK = {a, a + 1, . . . , b} is the set of
integers between a and b.

2.2. Introducing chaotic iterations

Definition 1. Let f : BN −→ BN and S ∈ P
(
J1,NK

)N.
Chaotic iterations (f , (x0, S)) are defined by:

x0 ∈ BN

∀n ∈ N∗,∀i ∈ J1; NK, xn
i =

{
xn−1

i if i < S n

f (xn−1)i if i ∈ S n

We have regarded whether these chaotic iterations can
behave chaotically, as it is defined for instance by Devaney,
and if so, in which application context this behavior can
be profitable. To do so, chaotic iterations have first been
rewritten as simple discrete dynamical systems, as follows.

2.3. The Study of Iterative Systems

We have firstly stated that [6] (for the definitions of well-
known mathematical properties of chaos, readers are re-
ferred to [4, 5, 7]):

Theorem 1. G f0 is regular and transitive on (X, d), thus it
is chaotic according to Devaney. Furthermore, its constant
of sensibility is greater than N − 1.

- 385 -

2014 International Symposium on Nonlinear Theory and its Applications
NOLTA2014, Luzern, Switzerland, September 14-18, 2014

Figure 1: Example of an asynchronous iteration graph

Thus the set C of functions f : BN −→ BN making the
chaotic iterations of Definition 1 a case of chaos according
to Devaney, is a nonempty set. To characterize functions of
C, we have firstly stated that transitivity implies regularity
for these particular iterated systems [3]. To achieve charac-
terization, we then have introduced the following graph.

Let f be a map from BN to itself. The asynchronous it-
eration graph associated with f is the directed graph Γ(f)
defined by: the set of vertices is BN; for all x ∈ BN and
i ∈ J1; NK, the graph Γ(f) contains an arc from x to F f (i, x).
The relation between Γ(f) and G f is clear: there exists a
path from x to x′ in Γ(f) if and only if there exists a strat-
egy s such that the parallel iteration of G f from the initial
point (s, x) reaches the point x′. Figure 1 presents such an
asynchronous iteration graph. We thus have proven that [3].

Theorem 2. G f is transitive, and thus chaotic according
to Devaney, if and only if Γ(f) is strongly connected.

This characterization makes it possible to quantify the

number of functions in C: it is equal to
(
2N

)2N

. Then the
study of the topological properties of disorder of these iter-
ative systems has been further investigated, leading to the
following results.

Theorem 3. ∀ f ∈ C, Per
(
G f

)
is infinitely countable, G f

is strongly transitive and is chaotic according to Knudsen.
It is thus undecomposable, unstable, and chaotic as defined
by Wiggins.

Theorem 4.
(
X,G f0

)
is topologically mixing, expansive

(with a constant equal to 1), chaotic as defined by Li and
Yorke, and has a topological entropy and an exponent of
Lyapunov both equal to ln(N).

At this stage, a new kind of iterative systems that only
manipulates integers have been discovered, leading to the
questioning of their computing for security applications. In
order to do so, the possibility of their computation without
any loss of chaotic properties has first been investigated.
These chaotic machines are presented in the next section.

Figure 2: Turing Machine

3. Chaotic Turing Machines

3.1. General presentation

Let us consider a given algorithm. Because it must be
computed one day, it is always possible to translate it as
a Turing machine, and this last machine can be written as
xn+1 = f (xn) in the following way. Let (w, i, q) be the cur-
rent configuration of the Turing machine (Figure 2), where
w =]−ωw(0) . . .w(k)]ω is the paper tape, i is the position of
the tape head, q is used for the state of the machine, and δ
is its transition function (the notations used here are well-
known and widely used). We define f by:

• f (w(0) . . .w(k), i, q) = (w(0) . . .w(i − 1)aw(i +

1)w(k), i + 1, q′), if δ(q,w(i)) = (q′, a,→),

• f (w(0) . . .w(k), i, q) = (w(0) . . .w(i − 1)aw(i +

1)w(k), i − 1, q′), if δ(q,w(i)) = (q′, a,←).

Thus the Turing machine can be written as an iterate func-
tion xn+1 = f (xn) on a well-defined set X, with x0 as the
initial configuration of the machine. We denote by T (S)
the iterative process of the algorithm S .

Let τ be a topology on X. So the behavior of this dy-
namical system can be studied to know whether or not the
algorithm is τ-chaotic. Let us now explain how it is possi-
ble to have true chaos in a finite state machine.

3.2. Practical Issues

Up to now, most of computer programs presented as
chaotic lose their chaotic properties while computing in the
finite set of machine numbers. The algorithms that have
been presented as chaotic usually act as follows. After hav-
ing received its initial state, the machine works alone with
no interaction with the outside world. Its outputs only de-
pend on the different states of the machine. The main prob-
lem which prevents speaking about chaos in this particu-
lar situation is that when a finite state machine reaches the
same internal state twice, the two future evolution are iden-
tical. Such a machine always finishes by entering into a cy-
cle while iterating. This highly predictable behavior cannot
be set as chaotic, at least as expressed by Devaney. Some
attempts to define a discrete notion of chaos have been pro-
posed, but they are not completely satisfactory and are less
recognized than the notions evoked in a previous section.

The next stage was then to prove that chaos is possi-
ble in finite machine. The two main problems are that:
(1) Chaotic sequences are usually defined in the real line
whereas define real numbers on computers is impossible.

- 386 -

Figure 3: A chaotic finite-state machine. At each iteration,
a new value is taken from the outside world (S). It is used
by f as input together with the current state (E).

(2) All finite state machines always enter into a cycle when
iterating, and this periodic behavior cannot be stated as
chaotic.

The first problem is disputable, as the shadow lemma
proves that, when considering the sequence xn+1 =

trunck (f (xn)), where (f , [0, 1]) is a chaotic dynamical sys-

tem and trunck(x) =
b10k xc

10k is the truncated version of
x ∈ R at its k−th digits, then the sequence (xn) is as close
as possible to a real chaotic orbit. Thus iterating a chaotic
function on floating point numbers does not deflate the
chaotic behavior as much. However, even if this first claim
is not really a problem, we have prevent from any disputa-
tion by considering a tool (the chaotic iterations) that only
manipulates integers bounded by N.

The second claim is surprisingly never considered as an
issue when considering the generation of randomness on
computers. However, the stated problem can be solved in
the following way. The computer must generate an output
O computed from its current state E and the current value
of an input S , which changes at each iteration (Figure 3).
Therefore, it is possible that the machine presents the same
state twice, but with two future evolution completely differ-
ent, depending on the values of the input. By doing so, we
thus obtain a machine with a finite number of states, which
can evolve in infinitely different ways, due to the new val-
ues provided by the input at each iteration. Thus such a
machine can behave chaotically.

4. Application to Hash Functions

4.1. Definitions

This section is devoted to a concrete realization of such
a finite state chaotic machine in the computer science secu-
rity field. We will show that, given a secured hash function,
it is possible to realize a post-treatment on the obtained di-
gest using chaotic iterations that preserves the security of
the hash function. Furthermore, if the media to hash is ob-
tained frame by frame from a stream, the resulted hash ma-
chine inherits the chaos properties of the chaotic iterations
presented previously. For the interest to add chaos prop-
erties to an hash function, among other things regarding
their diffusion and confusion [8], reader is referred to the
following experimental studies: [1, 2, 6].

Let us firstly introduce some definitions.

Definition 2 (Keyed One-Way Hash Function). Let Γ and
Σ be two alphabets, let k ∈ K be a key in a given key space,
let l be a natural numbers which is the length of the out-
put message, and let h : K × Γ+ → Σl be a function that
associates a message in Σl for each pair of key, word in
K ×Γ+. The set of all functions h is partitioned into classes
of functions {hk : k ∈ K} indexed by a key k and such that
hk : Γ+ → Σl is defined by hk(m) = h(k,m), i.e., hk gener-
ates a message digest of length l.

Definition 3 (Collision resistance). For a keyed hash func-
tion h : Bk ×B∗ −→ Bn, define the advantage of an adver-
sary A for finding a collision as

AdvA = Pr

 K
$
←− Bk

(m,m′)← A(K)
:

m , m′

h(K,m) = h(K,m′)

(1)

where $ means that the element is pick randomly. The in-
security of h with respect to collision resistance is

InS ech(t) = max
A
{AdvA} (2)

when the maximum is taken over all adversaries A with
total running time t.

In other words, an adversary should not be able to find a
collision, that is, two distinct messages m and m′ such that
h(m) = h(m′).

Definition 4 (Second-Preimage Resistance). For a keyed
hash function h : Bk × B∗ −→ Bn, define the advantage of
an adversary A for finding a second-preimage as

AdvA(m) = Pr

 K
$
←− Bk

m′
$
←− A(K)

:
m , m′

h(K,m) = h(K,m′)

(3)

The insecurity of h with respect to collision resistance is

InS ech(t) = max
A

{
max
m∈Bk
{AdvA(m)}

}
(4)

when the maximum is taken over all adversaries A with
total running time t.

That is to say, an adversary given a message m should
not be able to find another message m′ such that m , m′

and h(m) = h(m′). Let us now give a post-operative mode
that can be applied to a cryptographically secure hash func-
tion without loosing the cryptographic properties recalled
above.

Definition 5. Let

• k1, k2, n ∈ N∗,

• h : (k,m) ∈ Bk1 × B∗ 7−→ h(k,m) ∈ Bn a keyed hash
function,

• S : k ∈ Bk2 7−→
(
S (k)i

)
i∈N
∈ J1, nKN:

- 387 -

– either a cryptographically secure pseudorandom
number generator (PRNG),

– or, in case of a binary input stream m =

m0||m1||m1|| . . . where ∀i, |mi| = n,
(
S (k)i

)
i∈N

=(
mk

)
i∈N

.

• K = Bk1 ×Bk2 ×N called the key space,

• and f : Bn −→ Bn a bijective map.

We define the keyed hash functionHh : K × B∗ −→ Bn by
the following procedure

Inputs: k = (k1, k2, n) ∈ K
m ∈ B∗

Runs: X = h(k1,m), or X = h(k1,m0) if m is a stream
for i = 1, . . . , n :

X = G f (X, S i)
return X

Hh is thus a chaotic iteration based post-treatment on
the inputted hash function h. The strategy is provided by
a secured PRNG when the machine operates in a vacuum
whereas it is redetermined at each iteration from the input
stream in case of a finite machine open to the outside. By
doing so, we obtain a new hash functionHh with h, and this
new one has a chaotic dependence regarding the inputted
stream.

4.2. Security proofs

The two following lemma are obvious.

Lemma 1. If f : Bn −→ Bn is bijective, then ∀S ∈ J1, nK,
the map G f ,S : x ∈ Bn → G f (x, S)1 ∈ B

n is bijective too.

Proof. Let y = (y1, . . . , yn) ∈ Bn and S ∈ J1, nK. Thus

G f ,S (y1, . . . , yS−1, f −1(yS), yS +1, . . . , yn)1 = y.

So G f ,S is a surjective map between two finite sets.

Lemma 2. Let S ∈ J1, nKN and N ∈ N∗. If f is bijective,
then G f ,S ,N : x ∈ Bn 7−→ GN

f (x, S)1 ∈ B
n is bijective too.

Proof. Indeed, Gs, f ,n = G f ,S n ◦ . . . ◦ G f ,S 0 is bijective as a
composition of bijective maps.

We can now state that,

Theorem 5. If h satisfies the collision resistance property,
then it is the case too forHh. And if h satisfies the second-
preimage resistance property, then it is the case too forHh.

Proof. Let A(k1, k2, n) = (m1,m2) such that
Hh ((k1, k2, n),m1) = Hh ((k1, k2, n),m2). Then
G f ,S (k2),n (h(m1)) = G f ,S (k2),n (h(m2)). So h(m1, k1) =

h(m2, k1).
For the second-preimage resistance property, let m, k ∈

B∗ × K . If a message m′ ∈ B∗ can be found such that
Hh(k,m) = Hh(k,m′), then h(k1,m) = h(k1,m′): a second-
preimage for h has thus be found.

Finally, as Hh simply operates chaotic iterations with
strategy S provided at each iterate by the media, we have:

Theorem 6. In case where the strategy S is the bitwise xor
between a secured PRNG and the input stream, the resulted
hash functionHh is chaotic.

5. Conclusion

In this article, the research we have previously done in
the field of truly chaotic finite machines are summarized
and clarified to serve as an introduction to our approach.
This approach consists in considering a specific family of
discrete dynamical systems that iterate on a set having the
form X = P

(
J1,NK

)N
× BN, making it possible to obtain

pure, non degenerated chaos on finite machines. These par-
ticular dynamical systems are called chaotic iterations. Our
method consists in considering the left part of X as the tape
of the Turing machine whereas the right part is the state
register of the machine. Chaos implies here that if the ini-
tial tape and the initial state are not known exactly, then for
some transition function the evolution of the iterates of the
Turing machine cannot be predicted.

References

[1] J. Bahi, J-F. Couchot, and C. Guyeux. Performance
analysis of a keyed hash function based on discrete and
chaotic proven iterations. In INTERNET 2011, pages
52–57, Luxembourg, Luxembourg, June 2011. Best
paper award.

[2] J. Bahi, J-F. Couchot, and C. Guyeux. Quality analysis
of a chaotic proven keyed hash function. International
Journal On Advances in Internet Technology, 5:26–33,
2012.

[3] J. Bahi, J-F Couchot, C. Guyeux, and A. Richard. On
the link between strongly connected iteration graphs
and chaotic boolean discrete-time dynamical systems.
In FCT’11, volume 6914, pages 126–137, Oslo, Nor-
way, August 2011.

[4] R. L. Devaney. An Introduction to Chaotic Dynamical
Systems. Addison-Wesley, 2nd edition, 1989.

[5] Enrico Formenti. Automates cellulaires et chaos : de
la vision topologique à la vision algorithmique. PhD
thesis, École Normale Supérieure de Lyon, 1998.

[6] C. Guyeux and J. Bahi. A topological study of chaotic
iterations. application to hash functions. In CIPS, vol-
ume 394, pages 51–73. Springer, 2012. Best paper.

[7] Knudsen. Chaos without nonperiodicity. Amer. Math.
Monthly, 101, 1994.

[8] C. E. Shannon. Communication theory of secrecy sys-
tems. Bell Systems Technical Journal, 28:656–715,
1949.

- 388 -

