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Abstract—”BunKi” is a free software program for an-
alyzing bifurcation phenomena observed in nonlinear dy-
namical systems. By using the software, we can con-
duct real-time simulation of nonlinear dynamical systems
and can evaluate its stabilities of solutions. In addi-
tion, this software enables to track numerically bifurca-
tion sets on an arbitrary two parameter plane. The cur-
rent version of Bunki supports bifurcation analysis for non-
autonomous systems with an external continuous inputs,
e.g., sinusoidal input. However, the bifurcation analysis
in a non-autonomous system with an external discontin-
uous input such as a square-wave pulse trains cannot be
conducted. Accordingly, we added a new function that
allows us to analyze bifurcation phenomena observed in
a non-autonomous system with square-wave pulse trains.
In this report, we demonstrate to analyze bifurcation of
periodic solution observed in the non-autonomous system
with square-wave pulse trains, and briefly show how to use
BunKi.

1. Introduction

Bifurcation analyses in nonlinear dynamical systems are
one of the most powerful analysis methods, to find changes
in the stability of periodic oscillations and the emergence
of complex oscillations for choosing parameters. BunKi
[1] has been developed as a free software for the bi-
furcation analyses. The software has intuitively easy-to-
understand interfaces and can be conducted comparatively
easy bifurcation analyses in continuous and/or discrete au-
tonomous systems belonging to nonlinear dynamical sys-
tems. To investigate bifurcation phenomena observed in
a non-autonomous system with an external continuous in-
put, a numerical and computational method proposed by
Kawakami [2] was implemented into the software. How-
ever, the method implemented into the software cannot ap-
ply to bifurcation analyses of a non-autonomous system
when there is a certain kind of discontinuity in the exter-
nal forcing. For example, a mathematical model to con-
sider the entrainment of the circadian rhythm in the bio-
logical system to diurnal change was modeled as the non-
autonomous discontinuous system whose the periodic forc-
ing discontinuously changed over time.

Therefore, we added a new function to the software. In

particular, we improved the software that enables to ana-
lyze bifurcation for a non-autonomous system with square-
wave pulse trains. In the following, we apply the new func-
tion of the software to a circadian clock model with light-
dark cycles as an example of the non-autonomous discon-
tinuous system with square-wave pulse trains, and briefly
show an example of the bifurcation analysis of the circa-
dian system by using BunKi.

2. Method for Bifurcation Analysis in a Non-
autonomous System with Square-wave Pulse
Trains

Bifurcation occurs when the stability of periodic solu-
tions changes by varying system parameters. To investi-
gate these bifurcations, we use a method involving a stro-
boscopic map, also called the Poincaré map. Thereby, the
analysis of a periodic solution is reduced to that of a fixed
point on the Poincaré map. In the following, we briefly
explain the method of calculating a bifurcation set on an
arbitrary two-parameter plane in a non-autonomous system
with the square-wave pulse trains.

Now let us consider the following non-autonomous dif-
ferential equations:

dx
dt
= f (t, x, λ) (1)

where t ∈ R denotes the time, x is the state x ∈ Rn, and λ ∈
Rm is the system parameters. Let f in Eq. (1) be periodic in
time with τ, i.e. f (t + τ, x, λ) = f (t, x, λ), for all t. We also
assume that a solution of Eq. (1) with an initial condition
x = x0 at t = t0 is described by x(t) = ϕ(t, λ; t0, x0), for all
t.

Figure 1(a) shows an example of the square-wave pulse
trains, where smin and smax represent the minimum and
maximum value of the square-wave pulse, respectively and
α denotes the ratio of the time remained at the value of smax

to that at the value of smin.
Now, let us redefine the system of Eq. (1) as the non-

autonomous system with the square-wave pulse trains as
follows:

dx
dt
= f (t, x, λ)

=

{
fa(x, λ0, λa), t0 ≤ t < t0 + ατ
fb(x, λ0, λb), t0 + ατ ≤ t < t0 + τ

(2)
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Figure 1: A schematic diagram of square-wave pulse
trains and of a discontinuous trajectory observed in a
non-autonomous system with periodic discontinuous pulse
trains. (a) square-wave pulse trains. (b) Discontinuous tra-
jectory of a periodic solution.

where λ0 ∈ Rm−1 denotes common parameters for f , and
λa, λb ∈ R are the parameters specifying fa and fb, respec-
tively. Namely, the parameters λa and λb correspond to
smax and smin of Fig. 1(a), respectively. In the following,
we describe the solutions of the first and second equation
of Eq. (2):

x(t) = ϕa(t, λ0, λa; t0, x0), t0 ≤ t < t0 + ατ, (3)

x(t) = ϕb(t, λ0, λb; t0, x0), t0 + ατ ≤ t < t0 + τ. (4)

Figure 1(b) shows the schematic diagram of a trajectory
consisting of the solutions of Eqs. (3) and (4). The Poincaré
map

S : Rn → Rn

x0 �→ S (x0) = ϕ(t0 + τ, λ0, λa, λb; t0, x0)
(5)

is defined as a composite map S = S b ◦ S a, to avoid dis-
continuity in the derivative of the solution at t = t0, and
t = t0 + ατ, where S a and S b are given by the following
submaps:

S a : Rn → Rn

x0 �→ x1 = ϕa(t0 + ατ, λ0, λa; t0, x0),
(6)

S b : Rn → Rn

x1 �→ x2 = ϕb(t0 + τ, λ0, λb; t0 + ατ, x1).
(7)

In this way, the behavior of a periodic solution can be re-
duced to that of a fixed point on the Poincaré map.

The numerical determination of a bifurcation set
is accomplished by using the method proposed by

Kawakami [2] so that the accurate location of a fixed point
and a bifurcation parameter value are calculated by solv-
ing the fixed point equation and the bifurcation condition
simultaneously.

3. An Example of Bifurcation Analyses in Non-
autonomous System Using BunKi

As an example of the bifurcation analyses in the non-
autonomous system with square-wave pulse trains, we ap-
plied the method to a molecular circadian clock model with
light-dark cycles [4] described as follows:

dM
dt
= vs(t)

Kn
I

Kn
I + Fn

N

− vm
M

KM + M
,

dFC

dt
= ksM − vd

FC

Kd + FC
− k1FC + k2FN ,

dFN

dt
= k1FC − k2FN ,

(8)

where M, FC , and FN are state variables, and
KI ,Kd,KM, k1, k2, ks, vd, and vm are system parameters.
Through this report, the values of system parameters in
Eq. (8) are fixed as n = 4,KI = 1,Kd = 0.13,KM =

0.5, k1 = 0.5, k2 = 0.6, ks = 0.5, vd = 1.4, vm = 0.5, and
α = 0.5. vs(t) is an external periodic input of square-
wave pulse trains. In this model, quasi-periodic oscilla-
tions, chaos attractors, and many bifurcation phenomena
can be observed. By using the software BunKi, we demon-
strate an example of bifurcation analysis of periodic solu-
tion observed in the molecular circadian clock model with
the light-dark cycles.

Figure 2: The system editor (SE).

3.1. Description of System Equations
Figure 2 shows the application window of the system ed-

itor (SE). The system equations targeted for analysis is de-
scribed through SE, and then several analysis tools is cre-
ated. In SE, state variables of the non-autonomous system
are described as x[i] for i = 1, 2, ...n, where n is the di-
mension of the dynamical system. The system parameters
are described by arbitrary names which is sandwiched by
the symbols $ as shown in Fig. 2. If the system targeted
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for analysis is a non-autonomous system with square-wave
pulse trains, select the button ”Non-autonomous (square)”
and describe s(t) as the square-wave input into equations.
When several analysis tools are created by SE, two param-
eters of smax and smin in s(t) and an angular frequency of
periodic force (ω) are automatically added as the system
parameters. The ratio α is also added as a setting value
with respect to the square-wave input.

3.2. Simulation and Search of the Fixed Point
After several analysis tools is created by SE, we must

conduct simulations to search the stable fixed point. Fig-
ure 3(a) shows the application window to conduct real-time
simulations, called phase portrait (PP). The PP enables to
draw the trajectory of the periodic solution on an arbitrary
phase plane, the coordinate of the fixed point and time
course of the periodic solution on a real-time basis. Initial
values and the values of system parameters can set with the
application window as shown in Fig.3(a). An example of
the trajectory of the periodic solution observed in Eq. (8)
and the time course are shown in Fig. 3(b). The value of
system parameters can be also changed, and the coordinate
value when the area on the plot window is clicked is used
as a new initial value on a real-time basis.

(a)

(b) (c)

Figure 3: The real-time simulator, phase portrait (PP). (a)
control window, (b) plot window of the trajectory of the
periodic solution, and (c) time-course window.

3.3. Detection of the Occurrence of the Bifurcation
Next, we evaluate the stability of the fixed point, and

detect the parameter value when bifurcation occurs. Fig-
ure 4(a) shows the application window in a tool to detect
the occurrence of bifurcations, called fixed point (FIX). To

evaluate the stability of a fixed point and to detect the oc-
currence of the bifurcation, several information such as ini-
tial states of the fixed point, the values of system parame-
ters, the period of periodic solution, etc., are required. In-
formation related to the periodic solution can be taken by
executing the export function of PP.

By using FIX, the eigenvalues of solution in a linearized
system around the fixed point are calculated. Then the sta-
bility of the fixed point can be evaluated. The analysis tool,
FIX, enables to know the stability of a fixed point by draw-
ing the eigenvalue distribution on the plot window of eigen-
values as shown in Fig. 4(b). The eigenvalue distribution
changes as the value of system parameter changes. Bifurca-
tion occurs when one of the eigenvalues passes through the
unit circle on the plot window in Fig. 4(b) by changing the
value of system parameters. Figure 4(b) shows the exam-
ple of an occurrence of the bifurcation that the eigenvalue
passes through −1. Thus we can detect the occurrence of a
period-doubling bifurcation of the fixed point.

(a)

(b)

Figure 4: The calculating and detecting tool, fixed point
(FIX). (a) control window, and (b) plot window to view the
eigenvalue distribution.

3.4. Calculation of Bifurcation Curves
After a bifurcation point is detected by FIX, we conduct

a calculation for the bifurcation sets on an arbitrary two pa-
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rameter plane. Figure 5(a) shows the application window
in a tool to calculate the bifurcation sets, called bifurcation
(BF). Several information related to an initial point when
the bifurcation occurs obtained by using FIX are imported
to BF. Based on the initial point of the occurrence of the
bifurcation, BF calculates next bifurcation point and traces
continuously the bifurcation set on the arbitrary two param-
eter plane as shown in Fig. 5(b). The calculated result of
the bifurcation set is drawn in the plot window on a real-
time basis. At the same time, all eigenvalues are calculated
to detect the occurrence of other bifurcations.

(a)

(b)

Figure 5: The tracking tool of bifurcation set, bifurcation
(BF). (a) control window, and (b) the plot widow to view
the bifurcation set on a real-time basis.

3.5. Bifurcation Diagram

When the bifurcation set is obtained, we need to check
the bifurcation set on a two-parameter bifurcation diagram.
Figure 6(a) shows the application window in a tool to
draw a two-parameter bifurcation diagram, called BFPre-
senter. BFPresenter provide an interface to draw the two-
parameter bifurcation diagram from output files created by
BF. The bifurcation diagram that is made from BFPresenter
is shown in Fig. 6(b).

(a)

(b)

Figure 6: The drawing tool of a two-parameter bifurcation
diagram, called BFPresenter. (a) control window, and (b)
the bifurcation diagram.

4. Conclusion

We have added a novel function that enabled the soft-
ware to treat bifurcations of periodic solutions observed
in a non-autonomous system with the square-wave pulse
trains. Furthermore, we demonstrated an example of bifur-
cation analysis of periodic oscillation observed in a circa-
dian clock model with light-dark cycles. As a future work,
we will try to apply the new function to a variety of the
non-autonomous system with square-wave pulses such as
nervous systems, electric circuits, and social systems.
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