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1. Introduction

The radiation from an open-ended rectangular waveguide with a conducting flange is a classical
problem and has been extensively studied by a variety of methods [1]-[5]. Since this structure appears
in many EM problems such as the diffraction by single and coupled apertures in a thick screen and the
radiation from slot antennas, an accurate solution of a flanged waveguide is important. To obtain the
accurate result, the cross-polarized component and higher-order modes on the waveguide aperture must
be considered in the formulation, and many authors have considered them. The inclusion of the edge
property in the field is also effective in obtaining a highly accurate and fast convergent solution, but the
solution derived by including the proper edge condition is rather sparse [3, 6]. Mongiardo and Rozzi [3]
used the singular integral equation approach to derive the solution. Serizawa and Hongo [6] obtained the
exact solution that satisfies the proper edge condition by applying the method of the Kobayashi potential
(KP) [7].

In this paper, we numerically study the convergence of the KP solution of a flanged rectangular
waveguide. The expressions of the physical quantity include unknown coefficients and they are determined
by solving matrix equations whose elements consist of double infinite integrals and double infinite series
that include four Bessel functions. These integral and series are calculated with the desired accuracy by
applying the asymptotic approximation of the Bessel function. To verify the effect of inclusion of the
edge property, the reflection coefficient and mode amplitudes in the waveguide are computed for various
edge parameters and we show differences of convergence among the results.

2. Exact Solution of a Flanged Waveguide

Consider the radiation from a 2a x 2b size rectangular waveguide terminated by an infinite conducting
flange as described in Fig. 1. We assume that the half-space (region I) and the inside of the waveguide
(region II) are filled with isotropic and homogeneous lossless mediums with parameters (e, p1) and (eq,
po), respectively. The problem is to determine the field E? radiated from the waveguide into region I and
to evaluate the reflected wave E" in region II, when the waveguide is excited by TE- and/or TM-modes
(E? means the incident wave). In this analysis, the harmonic time dependence exp(jwt) is assumed. Since
the formulation that takes into account the proper edge condition is given in [6], we only show the results.
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Figure 1: Radiation of an Electromagnetic Wave from a Flanged Rectangular Waveguide.

2.1 Fields in the Waveguide and Half-Space

The fields in the waveguide are represented by a linear combination of the TE- and TM-modal
functions and axial components of vector potentials that satisfy the boundary conditions are given by
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where £ = x/a, n = y/b, z, = z/a are the normalized variables.
For the radiated waves in the half-space, we use the z and y components of the electric vector
potential F and they are given by the Kobayashi potential for the present problem.
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where o and 7 are selected so as to incorporate the edge property in the electric field [8]. Since the
clectric field behaves like B oc (1 — £2)72 (1 — 7?)7 2, Ed (1—¢€2)7"2(1 — %)™ 2 near edges, we
select 0 =7/6 and 7 = 1/6(= 0 — 1) for the same medium parameters (61 = €2, 11 = p2).

2.2 Matrix Equation

Matrix equations for the unknown expansion coeflicients Ag,f,)L ~ D,(,f% and A%’ZL ~ Dﬁf{% are given by
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where 4 =1—wu, o =1 —wv, and R,, = pu1/p2. The other symbols are defined by
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The matrix elements consist of double infinite integrals and double infinite series.
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where 0¢ is the Kronecker delta and v, = \/(mw/2)2 +p2 (n7/2)* — k% = jhypn. Parameters o’ and
7/ are determined by considering the edge property of the magnetic field [8]. The magnetic field behaves
like HY oc (1 —£€2)277 (1 —n2)2~7, HE o (1 - £2)2=9"(1 —?)2~" near edges. For the same medium
parameters, we select o' = —1/6(=1 — 0) and 7" = 5/6(= 1 — 7). However, to verify the effect of the
edge property of magnetic field, we add an integral parameter v(= 0,1,2,...) to ¢’ and 7" (v = 0 is the
exact case).

2.3 Reflection Coefficient and Mode Amplitudes

The reflection coefficients of the incident wave and the amplitudes of the higher-order modes can be

obtained from Bﬁ,ﬁ) and B,(nMn). The expressions of B,(frz and By, (M n are given by
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3. Numerical Results and Discussion

To obtain numerical results for the physical quantities of interest, the matrix elements must be
calculated. Since the elements consist of double infinite integrals and double infinite series, we apply an
effective method of computing them [5], [6] and the integrals and series are split into six and five parts,
respectively. Part of the integrals and series that include infinite regions are transformed into more simple
forms by using the asymptotic approximations of their integrands and summands. Thus the integrals
and series are computed with the desired accuracy. In practical computation, the matrix equation is
truncated to a finite size. When the maximum value of m, n, s, and ¢ in (3) is ng — 1, the matrix size
is 2n? x 2n?. By changing the value of ng, we can numerically verify the convergence of the solution.
To simplify the computation, we consider the case that the mediums I and IT have the same parameters,
that is, €1 = €3 =€, 1 = o = p, and k1 = kg = k (k1 = k2 = k). We compute the reflection coefficient
and amplitudes of higher order modes for ka = 2.235 and a/b = 2.25 (WR90 at a frequency of 9.33GHz)
when the waveguide is excited by TE;p mode (Agg) = 1). Figure 2 shows the results of the modulus

and phase of the reflection coefficient B(O) and the plots are obtained for four kinds of edge properties.
The property of o = 1 and 7 = 0 is the same as that of the thin plate (¢’ = 1 and 7/ = 1 are selected
in [5]). It is found from the figures that the rate of convergence for the correct edge property (v = 0)
is much faster than others, but all the results converge to the same value (the convergence rate depends
on the edge property incorporated into the solution). Figure 3 shows the results of higher order modes

B:(,,(])E), Bg). We also find that the rate of convergence of the exact solution is much faster than others.

4. Conclusion

By usign the exact solution of a flanged rectangular waveguide based on the Kobayashi potential,
the numerical result of the reflection coefficient and the amplitudes of higher order modes was obtained
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Figure 2:  Modulus and Phase of Reflection Coefficient for ka = 2.235 and a/b = 2.25.
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Figure 3:  Amplitudes of Higher Order Modes |B§§)| and |B£§)| Corresponding to Fig. 2.

and we numerically verified the effect of inclusion of the correct edge property on the convergence of the
solution. As a result, it was shown that the edge property about magnetic field is also indispensable for
obtaining a highly accurate and fast convergent solution as well as that about electric field.
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