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1. Introduction

The radiation from an open-ended rectangular waveguide with a conducting çange is a classical
problem and has been extensively studied by a variety of methods [1]{[5]. Since this structure appears
in many EM problems such as the diãraction by single and coupled apertures in a thick screen and the
radiation from slot antennas, an accurate solution of a çanged waveguide is important. To obtain the
accurate result, the cross-polarized component and higher-order modes on the waveguide aperture must
be considered in the formulation, and many authors have considered them. The inclusion of the edge
property in the åeld is also eãective in obtaining a highly accurate and fast convergent solution, but the
solution derived by including the proper edge condition is rather sparse [3, 6]. Mongiardo and Rozzi [3]
used the singular integral equation approach to derive the solution. Serizawa and Hongo [6] obtained the
exact solution that satisåes the proper edge condition by applying the method of the Kobayashi potential
(KP) [7].

In this paper, we numerically study the convergence of the KP solution of a çanged rectangular
waveguide. The expressions of the physical quantity include unknown coeécients and they are determined
by solving matrix equations whose elements consist of double inånite integrals and double inånite series
that include four Bessel functions. These integral and series are calculated with the desired accuracy by
applying the asymptotic approximation of the Bessel function. To verify the eãect of inclusion of the
edge property, the reçection coeécient and mode amplitudes in the waveguide are computed for various
edge parameters and we show diãerences of convergence among the results.

2. Exact Solution of a Flanged Waveguide

Consider the radiation from a 2aÇ2b size rectangular waveguide terminated by an inånite conducting
çange as described in Fig. 1. We assume that the half-space (region I) and the inside of the waveguide
(region II) are ålled with isotropic and homogeneous lossless mediums with parameters (è1, ñ1) and (è2,
ñ2), respectively. The problem is to determine the åeld Ed radiated from the waveguide into region I and
to evaluate the reçected wave Er in region II, when the waveguide is excited by TE- and/or TM-modes
(Ei means the incident wave). In this analysis, the harmonic time dependence exp(j!t) is assumed. Since
the formulation that takes into account the proper edge condition is given in [6], we only show the results.
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Figure 1: Radiation of an Electromagnetic Wave from a Flanged Rectangular Waveguide.

2.1 Fields in the Waveguide and Half-Space

The åelds in the waveguide are represented by a linear combination of the TE- and TM-modal
functions and axial components of vector potentials that satisfy the boundary conditions are given by
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TM mode:
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where ò= x=a, ë= y=b, za = z=a are the normalized variables.
For the radiated waves in the half-space, we use the x and y components of the electric vector

potential F and they are given by the Kobayashi potential for the present problem.
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where õ and ú are selected so as to incorporate the edge property in the electric åeld [8]. Since the

electric åeld behaves like Edx / (1 Ä ò2)úÄ 1
2 (1 Ä ë2)õÄ 1

2 , Edy / (1 Ä ò2)õÄ 1
2 (1 Ä ë2)úÄ 1

2 near edges, we
select õ= 7=6 and ú= 1=6(= õÄ 1) for the same medium parameters (è1 = è2, ñ1 = ñ2).

2.2 Matrix Equation

Matrix equations for the unknown expansion coeécients A(x)mn ò D(x)mn and A(y)mn ò D(y)mn are given by"
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where ñu = 1Ä u, ñv = 1Ä v, and Rñ = ñ1=ñ2. The other symbols are deåned by
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The matrix elements consist of double inånite integrals and double inånite series.
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where é̀`0 is the Kronecker delta and çmn =
q

(mô=2)2 + p2 (nô=2)2 Äî22 = jhmn. Parameters õ0 and

ú0 are determined by considering the edge property of the magnetic åeld [8]. The magnetic åeld behaves
like Hd

x / (1 Äò2) 12Äú0(1 Äë2) 12Äõ0 , Hd
y / (1 Äò2) 12Äõ0(1 Äë2) 12Äú0 near edges. For the same medium

parameters, we select õ0 = Ä1=6(= 1 Ä õ) and ú0 = 5=6(= 1 Äú). However, to verify the eãect of the
edge property of magnetic åeld, we add an integral parameter ó(= 0; 1; 2; . . .) to õ0 and ú0 (ó= 0 is the
exact case).

2.3 Reçection Coeécient and Mode Amplitudes

The reçection coeécients of the incident wave and the amplitudes of the higher-order modes can be

obtained from B(E)mn and B(M)
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E2m0+1+u;2n0+v and F2m0+u;2n0+1+v are derived from (8a) and (8b).

3. Numerical Results and Discussion

To obtain numerical results for the physical quantities of interest, the matrix elements must be
calculated. Since the elements consist of double inånite integrals and double inånite series, we apply an
eãective method of computing them [5], [6] and the integrals and series are split into six and åve parts,
respectively. Part of the integrals and series that include inånite regions are transformed into more simple
forms by using the asymptotic approximations of their integrands and summands. Thus the integrals
and series are computed with the desired accuracy. In practical computation, the matrix equation is
truncated to a ånite size. When the maximum value of m, n, s, and t in (3) is nk Ä 1, the matrix size
is 2n2k Ç 2n2k. By changing the value of nk, we can numerically verify the convergence of the solution.
To simplify the computation, we consider the case that the mediums I and II have the same parameters,
that is, è1 = è2 = è, ñ1 = ñ2 = ñ, and k1 = k2 = k (î1 = î2 = î). We compute the reçection coeécient
and amplitudes of higher order modes for ka = 2:235 and a=b = 2:25 (WR90 at a frequency of 9.33GHz)

when the waveguide is excited by TE10 mode (A(E)10 = 1). Figure 2 shows the results of the modulus

and phase of the reçection coeécient B
(E)
10 and the plots are obtained for four kinds of edge properties.

The property of õ= 1 and ú= 0 is the same as that of the thin plate (õ0 = 1 and ú0 = 1 are selected
in [5]). It is found from the ågures that the rate of convergence for the correct edge property (ó= 0)
is much faster than others, but all the results converge to the same value (the convergence rate depends
on the edge property incorporated into the solution). Figure 3 shows the results of higher order modes

B(E)30 ; B
(E)
12 . We also ånd that the rate of convergence of the exact solution is much faster than others.

4. Conclusion

By usign the exact solution of a çanged rectangular waveguide based on the Kobayashi potential,
the numerical result of the reçection coeécient and the amplitudes of higher order modes was obtained
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Figure 2: Modulus and Phase of Reçection Coeécient for ka = 2:235 and a=b = 2:25.
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Figure 3: Amplitudes of Higher Order Modes jB(E)30 j and jB(E)12 j Corresponding to Fig. 2.

and we numerically veriåed the eãect of inclusion of the correct edge property on the convergence of the
solution. As a result, it was shown that the edge property about magnetic åeld is also indispensable for
obtaining a highly accurate and fast convergent solution as well as that about electric åeld.
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