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Abstract 
 The Yee’s FDTD method for homogeneous conductive space is treated as a nonsymmetric 
half-plane (NSHP) support filter.  Its stability criterion is established from a modified multidimen-
sional signal processing theorem.  The result agrees with that obtained by the von Neumann’s 
method. This new approach may be extended for other FDTD-like methods. 
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1. Introduction 
 

The FDTD method [1][2] and its variations have been widely used.  The stability of these 
methods are often analyzed using von Neumann’s method [3][4].  On the other hand, these numeri-
cal schemes can be also viewed from a new aspect as space-time digital signal processing.  Their 
stability should be consistent with the stability criteria used in multidimensional signal processing.  
This paper is to show that the stability criteria for the 1-D Yee’s FDTD methods for homogeneous 
conductive space [5] can be rediscovered from the stability criteria for nonsymmetric half-plane 
(NSHP) support filters developed by Ekstrom and Woods [6][7] in multidimensional signal process-
ing. 
 

Many stability criteria for multidimensional signal processing have been proposed [7]; how-
ever, most of them deal with filters which are causal in all dimensions, such as the criteria based or 
generalized on theorems proposed by Shanks et al. [8] or Huang [9], and the criteria for N-
dimensional filters by Justice and Shanks [10].  It will be shown in this paper that the space-time 
filter corresponding to Yee’s FDTD method for 1-D conductive space cannot be put in standard ra-
tional forms, which are necessary to apply the stability criterion for filters causal in all dimensions. 
 

In addition, all the stability criteria in digital signal processing treat the condition that the 
poles of the multidimensional z-transform of the system transfer functions are on the unit circle as a 
cause of instability.  However, the von Neumann’s method regards its equivalent condition as stable 
in numerical analysis, since the field will not grow in this case. We will introduce the concept of 
exponential stability such that results obtained via multidimensional signal processing theorems can 
be consistent with the von Neumann’s method. 
 

This paper starts with the introduction of the stability criteria for NSHP support filters in 
Section 2.  Then we introduce the concept of exponential stability and modify the stability criteria 
for NSHP support filters in Section 3.  The modified criteria are then applied to rediscover the sta-
bility criteria of Yee’s FDTD for 1-D homogeneous conductive space, in Sections 4, respectively.  
Finally, the conclusion will be given in Section 5. 
 

2. Stability Criteria for NSHP Support Filters 
 



 An NSHP region is defined as [7]  
 

}0,0{}0,0{Region  NSHP 2121  nnnn .                          (1) 
 
A filter defined on the NSHP support has been shown [6] that the filter is stable in the bounded-
input bounded-output (BIBO) sense if the system function )z,z(H 21 satisfies the following condi-
tions: 
(a) ),z(H 1   is analytic, i.e., free of singularities, on }1z{ 1  . 

(b) )z,(H 2
1je is analytic on  1z 2  , for all ],[1   . 

 

3. Exponential Stability 
 
 By the criteria (a) and (b) introduced in Section II, the system is unstable if there exists 
poles on the unit circle 1z1  or 1z 2  .  However, under condition (b) it can be shown that the 

poles of the system function for the Yee’s FDTD scheme in free space are exactly on the unit circle 
when it is regarded as stable by FDTD researchers. Thus, we have to apply the concept of exponen-
tial stability. 
 

By exponential stability, we assume that the system function is written 
as )z,z(Hlimlim)z,z(H 21
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 , and then the stable conditions become  

(a’) ),z(H 1   is analytic, i.e., free of singularities, on }1zlim{ 1
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4. Yee’s FDTD Algorithm for Conductive Space 
 
 Yee’s partial difference equations for 1-D homogeneous conductive space are 
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Here 0 is the intrinsic impedance of the free space, s is the Courant number,  



  0 , 0  is the 

permittivity of the free space,  and   are the relative permittivity and the conductivity of the 

space, respectively, and t is the sampling time interval.  Since the stability in numerical analysis is 
defined as that the initial conditions will not grow without bound in later iterations, we need not 
have excitation sources in (2)(3).   
 

Define the two-dimensional z-transforms 
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If we set initial conditions 0][0 kEx for 0k , and 0][2/1
0  kH y for all k, equations (2)(3) are obvi-

ously defined on an NSHP region (1), with 1n  and 2n  corresponding to the spatial index k  and the 

time index n , respectively. Accordingly,  and z are the 1z  and 2z , respectively, in Sections 2 and 
3.  
 



Take the two-dimensional z-transform of (2) and (3), we can solve 
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where, k
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00 ][)( .  Since 1),(H  , stability criterion (a’) is satisfied.  

 
Next, we check criterion (b’) by considering )z,(H jKe  and find that the poles satisfy 
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 , and (7) is identical with the stability polynomial equation obtained via the 

von Neumann’s method in [5].   
 

      The properties of the roots of (7) depend on the discriminator   1
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the discriminator is larger than or equal to zero, and  (7) will have two real roots  , .  To satisfy 

criterion (b’), we need 1,1   , which leads to 22   ,    011   ,    011   , 

and results in 
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conjugate pair, such as  j , with  ,  real.  To satisfy criterion (b’), we re-
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      By combining all the above stability requirements, we achieve a single condition, 10 2  .  

Since
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 , and   K , we have  s0 , which is just the stability requirement 

for the Courant number in an infinite dielectric space without conductive loss.  This result is also 
consistent with that given in [5]. 
 

5. Conclusions 
 



We have introduced the stability criteria for NSHP supported two-dimensional filters, 
which was set up for multidimensional signal processing.  Such criteria have been modified by ex-
ponential stability such that the system is regarded stable when poles locate on the unit circle.  The 
modified criteria have been applied to rediscover the stability criteria for Yee’s FDTD method for 
conductive space.  The stability criterion (b’) is found equivalent to the requirement derived from 
the von Neumann’s method that the stability polynomial equation must be with roots within or on 
the unit circle. The stability criterion (a’) was not found in literatures of numerical solution for par-
tial differential equations before.  However, they are related to just initial conditions, and are satis-
fied for the cases we deal with.  One interesting question would be if these criteria can be general-
ized to 2-D or 3-D FDTD-family schemes.  Since the von Neumann’s method has been successively 
applied to those problems, it is very likely that the concept of stability criteria for NSHP supported 
filters can be generalized to N-dimensional.  The problem is how to find a solid mathematical proof 
like those given in [6]. Another possible way is to reduce the three-dimensional z-transform solution 
to a two-dimensional one, and then apply the NSHP criteria given in this paper. These stability cri-
teria in multidimensional signal processing,  could be also used as an alternative derivation of sta-
bility criteria for other existent or new FDTD-like numerical schemes in homogeneous media, such 
as ADI in free space [11] and as a tool for validation of the common von-Neumann’s method. 
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