
Band Diagram Analysis of Frequency-Dependent 
Photonic Band-Gap Structures Using FDFD 

Method 
 

#Amin Gul HANIF 1, Toru UNO 2 , Takuji ARIMA 3 

 
1 50009834203@st.tuat.ac.jp , 2  uno@cc.tuat.ac.jp, 3 t-arimia@cc.tuat.ac.jp 

 

Electronic and Information Engineering Department, Graduate School of 
Engineering,  Tokyo University of Agriculture and Technology 

2-24-16 Naka-cho, Koganei-shi, Tokyo, Japan 184-0012 
 
 

Abstract 
 Recently, photonic band-gap (PBG) structures are under intense research due to their 
various applications in optics, microwave, and antenna engineering. Therefore, the accurate 
modelling of band diagram of frequency-dependent PBG structures is highly needed because the 
electric properties of all of the materials depend on frequency. In this paper, a new finite-difference 
frequency-domain (FDFD) algorithm is derived to calculate the propagation modes in frequency-
dependent PBG structures. For validity of this method, the results are compared with the finite-
difference time-domain (FDTD) method. 
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1. Introduction 
 
 Photonic band-gap (PBG) structures or photonic crystals (PCs) [1] are artificial materials that consist 
of periodic structures with different refractive indices. Over the past more than 30 years, researchers have 
made remarkable achievements in this area. Recently, there has been considerable interest in analysis of band 
structure of frequency-dependent or linear dispersive PBG structures in which the relative permittivity of the 
material is frequency-dependent. Appropriate treatment of frequency-dependent materials is needed for 
accurate modelling of propagation modes over a wide range of frequencies in microwave and optical ranges. 
The finite-difference time-domain (FDTD) method is the famous computational electromagnetic technique for 
modelling of wave propagation [2][3]. In order to model frequency-dependent materials, the usual Yee FDTD 
time-stepping equations need to be modified.  Modified FDTD algorithm have been introduced to deal with 
the frequency-dependent materials [4]-[6]. However, FDTD does not have enough accuracy in calculation of 
band structure for frequency-dependent PBG structures. FDTD first calculates the fields and then the eigen-
modes can be obtained using these fields values. Therefore the accuracy is affected due to many reasons. 
Spurious eigenfrequencies will appear in addition to the desired solutions if the data is noisy or some 
eigenfrequencies may be missed if the excitation or monitor is not properly placed. FDTD cannot detect the 
eigenfrequencies when they are very close to each other or FDTD has limitation in resolution of degenerated 
modes.  
 On the other hand, the finite-difference frequency-domain (FDFD) method can analyze the band 
diagram of PBG structure accurately, because the FDFD algorithm is finalized with an eigenvalue matrix 
equation, and every eigen-mode can be found directly from the solution of this matrix equation and there is no 
need to use field values or to set observation and source points [7]-[11]. If we look back to the history of 
FDFD method, Yang [10] proposed a finite-difference frequency-domain based on directly discretizing the 
Helmholtz’s equation in the homogeneous sub-regions and field matching at the central grid point. After that 
various FDFD algorithms have been introduced that are  applicable for different applications and reducing the 
computational time. 
 In this paper, a new FDFD method is derived to calculate the band diagram of PBG structures built 
with frequency-dependent materials characterized by Debye model. The formulation of this method is 
summarized with eigenvlaue problem, from which one can find the eigenfrequencies easily. The 
eigenfrequencies, are calculated using the Implicitly Restarted Arnoldi  (IRA) algorithm [12]. The normalized 
frequencies versus the wave numbers in irreducible Brillouin zone can be found from these eigenfrquencies 



straight forward. As this method uses eigenvalue equation and there is no chance to lose the eigenfrequency 
for any of the band point, therefore it can compute the propagation modes in frequency-dependent PBG 
structures accurately. This FDFD method can lead to model other types of frequency-dependant or dispersive 
PBG structures.  In order to validate this method, the results are compared with the FDTD method, that show 
a high accuracy and stability. In this paper, the TM case of 2-dimensional (2D) PBG structure for square 
lattice is analyzed, where the TE case is straight forward.  
 
2. Formulation 
 
 In order to develop the new FDFD algorithm for PBG structure composed of dispersive 
Debye medium, we start form the basics of traditional FDFD method [1]. The differential 
Maxwell’s equations in frequency domain are 
       
                                                                                                                        (1)
   
                      (2)
                             
Where µ and ε are relative permeability and permittivity respectively. In Eq.(2) we replace the 
relative permittivity ε by the single-pole Debye medium relative permittivity which has the 
following complex form 
        
                                                                   (3) 

         

Where sε is the static relative permittivity or the permittivity where the frequency is zero, ∞ε is the 
relative permittivity at infinite frequency, and 0t is the relaxation time. Discretizing of (1) and (2), 
after replacing of relative permittivity of Debye medium, using Yee’s mesh as shown in Fig. 1, and 
further arranging of the equations yield the following matrix equation.   
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Where yxyx Uand,U,V,V are field coefficients square matrices formed according to the boundary 

condition [1]. xµ , yµ , and '
zε are diagonal matrices representing the permeability or permittivity 

values at the corresponding grid points. 
zyx EH,H and, are field vectors at the grid points. By 

eliminating of xH and
yH from (4), we have the following matrix equation.  

           
                      (5) 
       
Where A is the characteristic matrix as 
         
                                                             (6) 
         

After replacing the value of '
zε into equation (5) and further arrangements of the terms, we obtain 

the following equation. 
 
                                  (7) 
           
Where 1I is the unit matrix; sε , ∞ε , and 0t are diagonal matrices composed of permittivity or 
relaxation time values at the grid points. With the substitutions of   
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We can solve (10) for ωby using the following matrix equation.  
 
                                                              (11) 
 
Where  
 
                                        and     
 
 
Equation (11) is an ordinary eigenvalue equation in which G is the characteristic matrix and ω is 
the eigenvalues of matrix G that corresponds to eigenfrequencies. From Eq. (11), one can find the 
normalized frequencies as 

c
a
π

ω
2

, where a is the length of the unit cell and c is the speed of light in 

free space. 
 
3. Numerical Results 
 
 For the validity of our method, the band diagram of 2-D PBG structure composed of 
dispersive Debye media, with square lattice, has been analyzed. Here, a  is the length of unit cell 
and r  is the radius of the dispersive cylinders. 2.0/ =ar

 
, mm1=a , and mm025.0=∆=∆ yx .  

In this FDFD method, the IRA algorithm is used to obtain the eigenfrequencies and in the FDTD 
method, the Harminv program is used to detect eigenfrequencies from the fields values [13]. For 
Debye model, 0t =9.4 E-12, sε =4.0, and ∞ε is set as 3.0, and 2.0 for analysis and validation of the 
methods. In FDTD, Gaussian pulse is used as a point source. 
 First to confirm the validity of this FDFD method ∞ε is set as 4.0, for this value the medium 
become pure dielectric for which we can use traditional FDFD straight forward, and the first eight 
propagation modes have been calculated and compared the results with the usual FDFD method [1] 
as shown in Fig. 2. The results of this FDFD algorithm are in excellent agreement with the usual 
FDFD method, which shows that the formulation of this algorithm is perfect. Fig. 3 shows the band 
diagram calculation of first eight propagation modes for which ∞ε is set as 3.0 and 2.0 in both the 
FDFD and FDTD methods. The propagation modes calculated by this FDFD method are very clear, 
where the FDTD method has some irregularities in these modes calculations. In FDFD method the 
eigenfrequencies are obtained directly form eigenvalue equation and there is no field data needed, 
therefore every point of the band has its own value even if the two modes are placed very close or 
overlap to each other . However, in the FDTD method when two modes are very close or 
degenerated then both of them are difficult to detect and one of them will lose. This degeneration of 
mode values will increase in the higher modes, which can be count as one of the FDTD fault in 
band diagram calculation. The loosing of degenerated points of the modes in the FDTD method also 
can be seen in Fig. 4 for which ∞ε = 2.0, where the FDFD values have high accuracy and there is no 
any value losing. 
 
4. Conclusion 
 

 The new derived FDFD method is successfully applied for mode propagation in PBG 
structure built with dispersive Debye medium. The formulation of FDFD method is summarized 
with eigenvalue equation, therefore the eigenfrequencies for each point of the band can be obtained 
even if the two neighbour eigenfrequencies are very close or overlap to each other. The results of 
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  Fig. 3. Comparison of FDFD and FDTD when the   
  relative permittivity at infinite frequency is 3.0. 

band diagram calculations for dispersive PBG structure are compared with those calculated by 
FDTD method. The results show that the FDFD method is very stable and capable to model the 
band diagram of dispersive PBG structure efficiently and accurately.  
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Fig. 2. Comparison of conventional FDFD and this FDFD 
when the parameters in this FDFD are set the same as in 
conventional FDFD for dielectric case.  

                
 
       Fig. 1 Fields alignments for TM mode analysis of  
       2-D dispersive PBG structure. 
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   Fig. 4. Comparison of  FDFD and FDTD when the 
   relative permittivity at infinite frequency is 2.0. 
 


