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Abstract
This paper consider the electromagnetic scattering problem of a periodic cylinder array with

an additional cylinder, and present expressions of the scattering factors that is proposed in Nakayama’s
shadow theory. The formulation is based on the pseudo-periodic Fourier transform with the use of the
recursive transition-matrix algorithm.
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1. Introduction

When a plane-wave illuminates a perfectly periodic structure, the Floquet theorem asserts that
the scattered fields are pseudo-periodic and the scattered fields have discrete spectra in the wavenumber
space. The field components can be therefore expressed in the generalized Fourier series expansions,
and the analysis region can be reduced to only one periodicity cell. Then most of the approaches for
periodic structures are based on the Floquet theorem. However, when the structural periodicity is locally
broken, the Floquet theorem is no longer applicable.

This paper considers an approach in spectral-domain to the scattering problem of a periodic
cylinder array with an additional cylinder. The fields in imperfectly periodic structures have continuous
spectra, and an artificial discretization is necessary on numerical computation. When perfectly periodic
structures are illuminated by incident fields with continuous spectra, the spectra of scattered fields have
infinite number of non-smooth points in the wavenumber space, which are called the Wood anomalies.
They do not vanish if the structural periodicity is locally collapsed, and should be taken into account
on the discretization in the wavenumber space. The present approach is based on the pseudo-periodic
Fourier transform (PPFT) [1]. PPFT converts an arbitrary function into a pseudo-periodic one, and
the conventional formulations for perfectly periodic structures based on the Floquet theorem can be
applied for the scattering problem of imperfectly periodic structures. The transformed function has also
a periodic property in terms of the transform parameter, which is related to the wavenumber, and the
analysis region in the spectral domain is reduced to the Brillouin zone. Therefore, the discretization
scheme in terms of the transform parameter can be considered inside the Brillouin zone. Recently,
Nakayama [2] proposed the shadow theory of grating, in which he suggested to use the scattering factors
instead of the reflection coefficients. This paper shows expressions of the scattering factors with the help
of the multilayer technique and the recursive transition-matrix algorithm (RTMA).

2. Settings of the Problem

We consider time-harmonic electromagnetic fields assuming a time-dependence in e−i ω t and
the scattering problem from a circular cylinder located near a periodic array of circular cylinders schemat-
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Figure 1: Geometry under consideration.

ically shown in Fig. 1. All the cylinders are infinitely long in the z-direction and situated parallel to
each other. The periodic cylinder array consists of identical cylinders with homogeneous and isotropic
medium described by the permittivity εp and the permeability µp, and the radius is ap. One cylinder in
the periodic array is located at (x, y) = (xp, yp) and the other cylinders are periodically spaced with a
common distance d in the x-direction. The additional cylinder with the permittivity εc, the permeabil-
ity µc, the radius ac is located at the center position (x, y) = (xc, yc), and the surrounding region is
a lossless, homogeneous, and isotropic material with the permittivity εs and the permeability µs. For
r = p, c, we also denote yr+ar and yr−ar by hr,1 and hr,2, and the wavenumber and the characteristic
impedance in each region are respectively given by kr = ω

√
εr µr and ζr =

√
µr/εr. The parameters

are chosen not to overlap each other and we suppose hp,1 < hc,2. The electromagnetic fields are sup-
posed to be uniform in the z-direction and two-dimensional scattering problem is here considered. Two
fundamental polarizations are expressed by TM and TE, in which the electric and the magnetic fields
are respectively parallel to the z-axis. Here, we denote the z-component of electric field for the TM-
polarization and the z-component of magnetic field for the TE-polarization by ψ(x, y), and show the
formulation. The incident field is supposed to illuminate the scatterers from the upper or lower regions
and there exists no source inside the scatterer region hp,1 ≤ y ≤ hc,2.

3. Outline of Formulation

The present approach uses the pseudo-periodic Fourier transform (PPFT) [1] to consider the
discretization scheme in the wavenumber space. PPFT of the field and its inverse are formally given by

ψ(x; ξ, y) =
∞∑

m=−∞
ψ(x−md, y) eimd ξ, ψ(x, y) =

1

kd

∫ kd/2

−kd/2
ψ(x; ξ) dξ (1)

where ξ is a transform parameter, and kd = 2π/d is the inverse lattice constant. PPFT converts an
arbitrary function into a pseudo-periodic one in terms of the spatial parameter x. Since the field outside
the cylinders satisfies the Helmholtz equation for the surrounding medium, the transformed field can be
expressed in the plane-wave expansion as

ψ(x; ξ, y) = f (−)(x, y − y′; ξ)tψ(−)(ξ, y′) + f (+)(x, y − y′; ξ)tψ(+)(ξ, y′) (2)

where the basis functions of plane-wave expansion are here given by column matrices f (±)(x, y; ξ), in
which the nth-component is given as(

f (±)(x, y; ξ)
)
n
= ei(αn(ξ)x±βn(ξ) y), αn(ξ) = ξ + nkd, βn(ξ) =

√
ks

2 − αn(ξ)2. (3)

The superscripts (+) and (−) indicate the column matrices corresponding to the plane-waves propagat-
ing in the positive and the negative y-direction, respectively, and ψ(+)(ξ, y′) andψ(−)(ξ, y′) denote the
column matrices of the amplitudes at y = y′.



Following RTMA manipulation, the amplitudes of incoming and outgoing plane-waves for the
periodic cylinder array and the additional cylinder are related as follows:(

ψ(+)(ξ, hp,1)

ψ(−)(ξ, hp,2)

)
=

(
Sp,11(ξ) F (0, 2 ap; ξ) + Sp,12(ξ)

F (0, 2 ap; ξ) + Sp,21(ξ) Sp,22(ξ)

)(
ψ(−)(ξ, hp,1)

ψ(+)(ξ, hp,2)

)
(4)(

ψ(+)(ξ, hc,1)

ψ(−)(ξ, hc,2)

)
=

(
0 F (0, 2 ac; ξ)

F (0, 2 ac; ξ) 0

)(
ψ(−)(ξ, hc,1)

ψ(+)(ξ, hc,2)

)
+

1

kd

∫ kd/2

−kd/2

(
Sc,11(ξ, ξ

′) Sc,12(ξ, ξ
′)

Sc,21(ξ, ξ
′) Sc,22(ξ, ξ

′)

)(
ψ(−)(ξ′, hc,1)

ψ(+)(ξ′, hc,2)

)
dξ′ (5)

with

Sp,11(ξ) = F (−xp, ap; ξ)B(+)(ξ)t
(
T−1

p −L(ξ)
)−1

A(−)(ξ)t F (xp, ap; ξ) (6)

Sp,12(ξ) = F (−xp, ap; ξ)B(+)(ξ)t
(
T−1

p −L(ξ)
)−1

A(+)(ξ)t F (xp, ap; ξ) (7)

Sp,21(ξ) = F (−xp, ap; ξ)B(−)(ξ)t
(
T−1

p −L(ξ)
)−1

A(−)(ξ)t F (xp, ap; ξ) (8)

Sp,22(ξ) = F (−xp, ap; ξ)B(−)(ξ)t
(
T−1

p −L(ξ)
)−1

A(+)(ξ)t F (xp, ap; ξ) (9)

Sc,11(ξ, ξ
′) = F (−xc,1, ac; ξ)B(+)(ξ)t T cA

(−)(ξ′)t F (xc, ac; ξ
′) (10)

Sc,12(ξ, ξ
′) = F (−xc,1, ac; ξ)B(+)(ξ)t T cA

(+)(ξ′)t F (xc, ac; ξ
′) (11)

Sc,21(ξ, ξ
′) = F (−xc,1, ac; ξ)B(−)(ξ)t T cA

(−)(ξ′)t F (xc, ac; ξ
′) (12)

Sc,22(ξ, ξ
′) = F (−xc,1, ac; ξ)B(−)(ξ)t T cA

(+)(ξ′)t F (xc, ac; ξ
′) (13)

(F (x, y; ξ))n,m = δn,m e
i(αn(ξ)x+βn(ξ) y) (14)(

A(±)(ξ)
)
n,m

=

(
i αn(ξ)± βn(ξ)

ks

)m

,
(
B(±)(ξ)

)
n,m

=
2

d βm(ξ)

(
−i αm(ξ)± βm(ξ)

ks

)n

(15)

(T r)n,m = δn,m


ζs Jn(ks ar) J ′

n(kr ar)−ζr J ′
n(ks ar) Jn(kr ar)

ζr H
(1)′
n (ks ar) Jn(kr ar)−ζs H

(1)
n (ks ar) J ′

n(kr ar)
for TM-polarization

ζr Jn(ks ar) J ′
n(kr ar)−ζs J ′

n(ks ar) Jn(kr ar)

ζs H
(1)′
n (ks ar) Jn(kr ar)−ζr H

(1)
n (ks ar) J ′

n(kr ar)
for TE-polarization

(16)

(L(ξ))n,m =

∞∑
l=1

H
(1)
m−n(l ks d)

[
(−1)m−n ei l d ξ + e−i l d ξ

]
(17)

where δn,m is the Kronecker delta and r = p, c.
Here, considering the periodicity in terms of the transform parameter ξ, we take L sample points

{ξl}Ll=1 in the first Brillouin zone −kd/2 < ξ ≤ kd/2, and Eqs. (4) and (5) are assumed to be satisfied
only at the sample points. Also, the integration in Eq. (5) is approximated by an appropriate numerical
integration scheme. Then, Eqs. (4) and (5) are rewritten as follows:(

ψ̃(+)(hp,1)

ψ̃(−)(hp,2)

)
=

(
Σ̃p,11 D̃ − I Σ̃p,12 D̃

Σ̃p,21 D̃ Σ̃p,22 D̃ − I

)(
ψ̃(−)(hp,1)

ψ̃(+)(hp,2)

)
(18)(

ψ̃(+)(hc,1)

ψ̃(−)(hc,2)

)
=

(
Σ̃c,11 D̃ − I Σ̃c,12 D̃

Σ̃c,21 D̃ Σ̃c,22 D̃ − I

)(
ψ̃(−)(hc,1)

ψ̃(+)(hc,2)

)
(19)

with

ψ̃(±)(y) =

ψ
(±)(ξ1, y)

...
ψ(±)(ξL, y)

 , D̃ =

D(ξ1) 0
. . .

0 D(ξL)

 , (D(ξ))n,m = δn,m
2βn(ξ)

ks
(20)

Σ̃p,nm =


Sp,nm(ξ1) 0

. . .
0 Sp,nm(ξL)

+ δn,m I + (1− δn,m) F̃ (2 ap)

 D̃−1 (21)



Σ̃c,nm =




w1
kd
Sc,nm(ξ1, ξ1) · · · wL

kd
Sc,nm(ξ1, ξL)

...
. . .

...
w1
kd
Sc,nm(ξL, ξ1) · · · wL

kd
Sc,nm(ξL, ξL)

+δn,mI+(1− δn,m) F̃ (2 ac)

D̃−1 (22)

F̃ (y) =

F (0, y; ξ1) 0
. . .

0 F (0, y; ξL)

 (23)

where {wl}Ll=1 denotes the weight factor and I denotes the identity matrix. The entries of Σ̃nm (n,m =
1, 2) are the scattering factors proposed in Nakayama’s shadow theory [2], and prospected to be possible
to calculate even when the Wood-Rayleigh anomalies. From Eqs. (18) and (19), we finally obtain the
scattering relation for the entire structure in the following form:(

ψ̃(+)(hc,1)

ψ̃(−)(hp,2)

)
=

(
Σ̃11 D̃ − I Σ̃12 D̃

Σ̃21 D̃ Σ̃22 D̃ − I

)(
ψ̃(−)(hc,1)

ψ̃(+)(hp,2)

)
(24)

and the scattering factors the entire structure is given by

Σ̃11 = Σ̃c,11 + Σ̃c,12 D̃ W̃
(
Σ̃p,11 D̃ − I

)
F̃ (hc,2 − hp,1) Σ̃c,21 (25)

Σ̃12 = Σ̃c,12 D̃ W̃ Σ̃p,12 (26)

Σ̃21 = Σ̃p,21 D̃ F̃ (hc,2−hp,1)
[
I +

(
Σ̃c,22 D̃ − I

)
W̃
(
Σ̃p,11 D̃ − I

)
F̃ (hc,2−hp,1)

]
Σ̃c,21 (27)

Σ̃22 = Σ̃p,21 D̃ F̃ (hc,2 − hp,1)
(
Σ̃c,22 D̃ − I

)
W̃ Σ̃p,12 + Σ̃p,22 (28)

W̃ = F̃ (hc,2 − hp,1)
[
I −

(
Σ̃p,11 D̃ − I

)
F̃ (hc,2 − hp,1)

(
Σ̃c,22 D̃ − I

)
F̃ (hc,2 − hp,1)

]−1
. (29)

4. Concluding Remarks

This paper has presents a formulation of the two-dimensional electromagnetic scattering prob-
lem from a circular cylinder located near a periodic array of circular cylinders. The formulation is based
on PPFT and the fields in homogeneous media are expressed in the plane-wave expansions. The scat-
tering matrices of the periodic cylinder array and the additional cylinder are separately calculated by
RTMA, and the plane-wave amplitudes are matched by the technique for multilayer structure. PPFT
introduces a transform parameter ξ and we need to discretize it for practical computation. The trans-
formed fields are periodic in terms of ξ and the discretization scheme can be considered inside the
Brillouin zone. It is worth noting that, if the sample points of the transform parameter {ξl}Ll=1 are taken
with the constant interval and the weights {wl}Ll=1 are identical constants, the conventional scattering
matrices converge very slowly in terms of the sample number L and the practical computation is impos-
sible. This problem is due to the Wood anomalies and seems to be resolved by splitting the Brillouin
zone at the anomalies. Then, the sample points and weights are decided by applying, for example, the
Gauss-Legendre scheme for each subinterval. We have showed expressions of the scattering factor that
is thought to weaken the singularity of Wood anomalies. This paper does not include the results of
numerical experiments because of the page limitation, but they will be shown in the presentation.
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