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Abstract 
 The coupled-mode formulation for two-dimensional coupled photonic crystal waveguides is 
discussed. Using a perturbation theory, the self-contained first-order coupled-mode equations are 
derived, which govern the evolution of the amplitudes of the eigenmodes of individual photonic 
crystal waveguides in isolation. 
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1. Introduction 
 
 A photonic crystal waveguide (PCW) consists of a line defect introduced in a perfect 
photonic crystal. If two photonic crystal waveguides (PCWs) are placed in close proximity, a 
coupled PCW is formed and the optical power is efficiently transferred from one PCW to another. 
Recently, the coupled PCW has received much attention because of their promising applications to 
miniaturized photonic devices such as filters, switches, power dividers, and couplers. The optical 
propagation in the coupled PCWs has been extensively analyzed using the plane wave expansion 
method [1],[2], the finite difference time domain method [1],[3], the scattering matrix method 
combined with the lattice sums [4],[5], and the coupled-mode theory [1],[2],[3]. Among others, the 
coupled-mode theory is an analytical method based on a perturbation theory and gives an 
approximate solution, which enables ones to get a clear picture on the power transfer between two 
PCWs. However, the previous pertinent studies have mostly assumed a prescribed form of the 
coupled-mode equations and calculated the coupling coefficients using the propagation constants of 
even and odd modes obtained by other numerical methods. 
 In this paper, we present a self-contained formulation of the coupled-mode theory for 
coupled two-dimensional PCWs. Using a perturbation theory, the first-order coupled-mode 
equations are systematically derived, which govern the evolution of the modal amplitudes in 
individual PCWs. The mutual- and self-coupling coefficients are obtained in terms of the 
propagation constants and eigenmode solutions of the two PCWs in isolation. 
 
2. Basic Equations 
 
 Let us consider the coupled two-dimensional PCWs consisting of a five-layered structure as 
shown in Fig. 1(a). The guiding layers “a” and “b” are separated by the barrier layer of photonic 
crystal. We do not specify here the particular configuration of three photonic crystal layers except 
that they have a common lattice constant zh  in the z direction. The upper photonic crystal, the lower 
photonic crystal, and the barrier are denoted by the subscripts “U”, “L”, and “B”, respectively.  
 The guided mode in the coupled waveguides shown in Fig. 1(a) is expanded in terms of the 
Floquet modes as follows: 
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where 2 /m zm hβ β π= + , 2 2
m mkγ β= − ,  k is the wavenumber in the background medium, and β   



is the mode propagation constant.  We define by +c  and −c  the column vectors whose elements are 
the expansion coefficients mc+  and mc− . Note that  +c  and −c  represent the amplitude vectors of the 

up-going and down-going Floquet modes. Let us denote by +a  and −a  the amplitude vectors of the 
Floquet modes defined at the upper and lower interfaces of the guiding layer “a” and by +b  and 

−b those of the guiding layer “b”. Applying a ray tracing to the Floquet modes, we have the 
following relations between four amplitude vectors: 

( )[ ( ) ( ) ], ( ) ( )a B B a Uβ β β β β+ − + − +⋅= + ⋅ = ⋅a � R a T b a � R a                               (2) 

( )[ ( ) ( ) ], ( ) ( )b B B b Lβ β β β β− − + + −= + =⋅ ⋅ ⋅b � T a R b b � R b                             (3) 
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where ( )U βR  is the generalized reflection matrix of the upper photonic crystal viewed from the 

guiding layer “a”, ( )L βR  is the generalized reflection matrix of the lower photonic crystal viewed 

from the guiding layer “b”, and ( )B βR  and ( )B βT  are the generalized reflection and transmission 
matrices of the photonic crystal barrier between two guiding layers “a” and “b”. If the lattice 
constants in the z and x directions, the radius and material constants of lattice elements, and the 
number of layers are specified for each of photonic crystals, the generalized reflection matrix 

( , , )p p U L B=R  and transmission matrix ( , , )p p U L B=T  can be calculated [5] using the T-matrix 
of the isolated single circular rod and the lattice sums. 
 To keep the equations for the coupled waveguide system in symmetric form, we employ −a  
and +b  as the leading amplitude vectors. Eliminating +a from Eq.(2), we have 

[ ( ) ( ) ( ) ( )] ( ) ( ) ( ) ( )B Ba U a a U aβ β β β β β β β− +⋅− = ⋅I � R � R a � R � T b .       (5) 

In the same way, from Eq.(3) we have 

[ ( ) ( ) ( ) ( )] ( ) ( ) ( ) ( )b L b B b L b Bβ β β β β β β β+ −− =⋅ ⋅I � R � R b � R � T a .       (6) 

The mode propagation constant β  and mode field distribution of the coupled waveguide system 
may be obtained [5] by directly solving the coupled linear equations (5) and (6). However, the 

transmission of the Floquet modes through the barrier with ( )B βT  is typically small enough. In this 
case, we can assume a concept of weak coupling and approximate Eqs.(5) and (6) in the form of 
coupled-mode equations. 
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Fig. 1. Schematics of the coupled two-parallel photonic crystal waveguides: (a) coupled photonic 
crystal waveguide system, (b) isolated photonic crystal waveguide “a”, and (c) isolated photonic 
crystal waveguide “b”. The structures are two-dimensional. 



3. Perturbation Theory 
 
 To perform a perturbation analysis, Eqs.(5) and (6) are rewritten in the following form: 

( ) ( ) ( ) ( )[ ( ) ( )] ( ) ( ) ( ) ( )a a U a B a U a BBβ β β β β β β β β β− − +∞⋅ ⋅= − + ⋅D a � R � R R a � R � T b    (7) 

( ) ( ) ( ) ( )[ ( ) ( )] ( ) ( ) ( ) ( )b b L b B b L b BBβ β β β β β β β β β+ ∞ + −= − +⋅ ⋅ ⋅D b � R � R R b � R � T a   (8) 
with  

( ) ( ) ( ) ( ) ( )a a U a Bβ β β β β∞= −D I � R � R                                                     (9) 

( ) ( ) ( ) ( ) ( )b b L b Bβ β β β β∞= −D I � R � R                                                    (10) 

where ( )B β∞R  is the generalized reflection matrix of the barrier with a thickness large enough so 

that two waveguides are isolated and ( )B β∞T 0� . As the barrier thickness increases, ( )B βR tends to 

( )B β∞R  while ( )B βT  tends to zero.  Under the weak coupling situation, we may regard the right 
hand sides of Eqs.(7) and (8) as a small perturbation. To find a solution through a perturbation 
analysis, the mode propagation constant and the amplitude vectors are expressed as follows: 

0 0 0, ,β β δβ δ δ− += + = + = +a a a b b b                                            (11) 

where δβ , δa , and δb  denote the small perturbations with the order of ( ) ( )B Bβ β∞−R R  and 

( )B βT  due to the finite thickness of the barrier. Equation (11) is substituted into Eqs.(7) and (8) to 
derive the leading order equations for the first-order analysis. For the zero-order analysis, we have 
the following equations: 

0 0 0 0( ) , ( )a bβ β⋅ = ⋅ =D a 0 D b 0 .                                                                (12) 

Equation (12) yields the eigenmode solutions of each of waveguides “a” and “b” in isolation as 
shown in Figs 1(b) and (c). The mode propagation constants 0 aβ β=  for waveguide “a” and 

0 bβ β=  for waveguide “b” are obtained [5] as the roots of det[ ( )] 0a aβ =D  and det[ ( )] 0b bβ =D , 

respectively. The associated solutions to 0a  and 0b  determine the amplitude coefficients of the 
Floquet modes. Using the zero-order solutions (12), the first-order perturbation equations are 
expressed in the following form: 
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where 
( ) ( ) ( ) ( )[ ( ) ( )]a a a a a a a a aU B Bβ β β β β β∞= −U � R � R R                               (15) 

( ) ( ) ( ) ( )[ ( ) ( )]L B Bb b b b b b b b bβ β β β β β∞= −U � R � R R                                (16) 

( ) ( ) ( ) ( ) ( )a a aU Bb b b b bβ β β β β=V � R � T                                                   (17) 

( ) ( ) ( ) ( ) ( )a a a a aL Bb b bβ β β β β=V � R � T  .                                                 (18) 

 
4. Coupled-Mode Equations 
 
 In order to obtain the coupled-mode equations in a standard form, we assume that 

2 / zhδβ π�  and rewrite the amplitudes vectors as follows: 

0 0,( )e ( )ea bi zi z
a bA z B z ββ= =a f b f                                                         (19) 

where ( )A z  and ( )B z  denote the slowly-varying mode amplitudes which characterize the small 
perturbation δβ  in the mode propagation constant, and af  and bf  are the normalized mode 



eigenvectors for the waveguides “a” and “b” in isolation. Using Eq.(19), Eqs.(13) and (14) are 
rewritten in the following form: 
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Equations (20) and (21) to be solved for the perturbed amplitude vectors δa  and δb  are singular, 
because det[ ( )] 0a aβ =D  and det[ ( )] 0b bβ =D . The solutions to the first-order equations are allowed 
only when a solvability condition is satisfied [6]. After straightforward manipulations, the 
solvability condition leads to the coupled-mode equations for ( )A z  and ( )B z  as follows: 
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( ) ( )a bβ β ω β ω∆ = −                                                                             (26) 

where ag  and bg  are the right eigenvectors that satisfy 
T

( )a a aβ ⋅ =D g 0  and 
T

( )b b bβ ⋅ =D g 0 , 
respectively. The solution to Eqs.(22) and (23) describes the power transfer characteristics between 
two-parallel photonic crystal waveguides “a” and “b” coupled through the photonic crystal barrier 
of a finite thickness. The perturbed amplitude vectors δa  and δb  can be determined from Eqs.(20) 
and (21) by using the same procedure as reported in [6]. 
 
5. Conclusions 
 
 The coupled-mode equations for coupled two-dimensional photonic crystal waveguides 
have been derived using a perturbation approach. The numerical calculation of the self- and mutual- 
coupling coefficients (24) and (25) is under consideration. 
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