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Abstract 
 High precision analysis of electromagnetic scattering problems for conducting cylinders 

with wedge cavities is performed. Contribution of electromagnetic waves from shadow regions is 

clarified for varying the shapes of cavities. 
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1. Introduction 
 Analysis of electromagnetic scattering is important for target recognition and reduction of 

the radar cross section (RCS) [1,2]. When targets have concave or convex portions has a cavity, the 

scattering phenomena become more complicated due to the multiple scattering and resonance inside 

the cavity [3]. Hence, development of a highly reliable computational technique is important. The 

authors have proposed a kind of mode matching techniques, the point matching method (PMM) 

taking into account of the edge conditions, and reported that electromagnetic scattering problems 

can be analyzed with high accuracy [4-6]. In this paper, high precision analysis of electromagnetic 

scattering problems is performed by using our proposed technique and contribution of 

electromagnetic waves from shadow regions of conducting cylinders with deep wedge cavities is 

clarified. 

 

2. Formulation 
 A scatterer shown in Fig. 1 is assumed to be uniform along the z-axis. The original structure 

is the rectangular cylinder whose cross section is 2a×2b. Here, P is the intersection point on the 

bottom plate. The cavity is formed to shift the midpoint of the side of a rectangle along the x-axis. 

 In our PMM, the whole physical space is divided into a finite number of sub-domains in 

which electromagnetic fields can be expanded by a sum of solutions to the Helmholtz equation. 

Considering the symmetry along the x-axis, we introduce the field decompositions in the upper half-

space  0y . The following seven regions shown in Fig. 2 are introduced. 

Region
0

S : Outside the circle
0

C  [origin O , radius
0

 ] 

The scattered field in this region satisfies the radiation condition. Therefore it can be approximated 

using a finite sum of modes in the coordinates 
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Figure 1: Geometry of a conducting 

rectangular cylinder with a deep wedge 

cavity. 

Figure 2: Field decomposition of the 

physical space for the PMM. 
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where   22

0
1: ba   ,   2

n
H  is the thn  order of the second kind of the Henkel function, 

 pA
n

 is unknown for the even phase  0p  and the odd phase  1p , and N  is the truncation 

number. 

Region
1

S : Inside the circle
1

C  [origin
1

O , radius
1

 ] 

This region is adjacent to the open-ended of the cavity. Therefore the field can be expanded by 

using the combination of trigonometric function, such as 
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where   22

0
1: ba   ,  

n
J  is the thn order of the Bessel function,  pB

n
 is unknown, 

1
M  is the truncation number, and pnm  2 . 

Region
l

S : Inside the circle 
l

C  52 l [origin
l

O , radius
l

 ] 

To satisfy the edge condition, the magnetic field can be written in the local coordinate system as 
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where  
l

J  is the th
l

 order of the Bessel function,
l

M is the truncation mode number for each 

separated region, and ll
 / ,  pnm  2  for 5l  and nm  for 42l . 

Region
6

S : Inside the circle
6

C  [origin
6

O , radius
6

 ] 

The field can be expanded using the combination of the th-
6

ν  order of the Bessel and Neumann 

functions as follows; 
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where    kdNkdJD
nnn 66 

 , 66
/  , and kd  is the distance PO

6
. 

The unknown expansion coefficients are determined to satisfy the continuity conditions at the 

sampling point which are placed at the almost same interval on the boundaries [5]. 

 

3. Computational Results 
 The RCS is investigated when a plane H-wave is incident on the scatterer from 

180
in
 when  90

1
 ,  180

53
 , and  270

4
 . These parameters are fixed hereafter. Fig. 3 

shows the bistatic RCS when the size of the scatterer is 1.47ka . The solid line shows the 

computational result for  360
2

   0
6

  and dots show that for  356
2

  8
6

 . We cannot 

distinguish these results at almost all the observation angles, since the shapes of the illuminated 

regions are the same flat plate for the both cases. To study contribution of electromagnetic waves 

from the shadow region, the difference D and D between two RCSs are defined as follows: 
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where max[ζ] is the maximum value of ζ, 
t

P is the total number of observation angles, and P is the 

number of samples near θ for taking the average. For the observation angle θ, D and D with 

600,3
t

P and 100P  are plotted in Fig. 4. The difference D of the RCSs for  356
2

  and 

 360
2

  appears in the fourth digit for observation angles )10(80 4  DD and in the 

fifth digit of the RCS for observation angles )10(80 5  DD .  



 Figs. 5 and 6 show the RCSs of 14.3ka  and 51.3ka , respectively. Other parameters 

are the same as the case in Fig. 3. Differences can be recognized at observation angles around 

90 when 14.3ka . On the other hand, differences for 51.3ka can be observed at all the 

observation angles. Fig. 7 shows D for the both cases. In the case of 51.3ka , the angular 

dependence is smaller in comparison with the case of 14.3ka  and the difference becomes 
110D  at all the observation angles. To study the field distribution when 51.3ka , we plot the 

magnetic field inside and outside cavities for  360
2

 and  356
2

 in Figs. 8 and 9, respectively. 

Difference of the field distribution can be easily recognized, since the cavity resonance is observed 

when  356
2

 . 
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Figure 3: Bistatic RCS for 47.1ka .  

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
10-8

10-6

10-4

10-2

100

D

・

 D


  [deg]

b/a = 1 ,  ka = 47.1

in = 180°

 D

 D

 
Figure 4: Difference between two RCSs for 47.1ka . 
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Figure 5: Bistatic RCS for 3.14ka . 
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Figure 6: Bistatic RCS for 3.51ka . 



 

Figure 7: Comparison between two D  for 3.14ka  and 3.51ka . 

 

     
 

 

 

 

4. Conclusions 
 In this paper, we study electromagnetic scattering from conducting rectangular cylinders 

with deep wedge cavities by using a king of mode matching technique. Contribution of 

electromagnetic waves from the shadow region is clarified. 
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Figure 8: Magnetic field of the wedge 

cavity for  360
2

  and 3.51ka . 

Figure 9: Magnetic field of the wedge 

cavity for  356
2

 and 3.51ka . 


