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Abstract 
      We derive a time-domain asymptotic solution for the edge-surface diffracted ray excited by the 
edge of a thin cylindrically curved conducting surface from the corresponding frequency-domain 
asymptotic solution. The validity of the asymptotic solution is confirmed by comparing with the 
reference solution calculated numerically. 
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1. Introduction 
 
      By recent technological advances in the area of radar cross section and target identification, it 
becomes important to study the asymptotic analysis methods for the frequency-domain (FD) and the 
time-domain (TD) scattered fields by curved objects with edges or wedges [1]-[3]. 
      In the previous study [4], we have derived the TD asymptotic solution for the transient 
whispering gallery (WG) mode radiation field radiated from the concave side of a thin cylindrically 
curved conducting open surface. It has been clarified that the instantaneous angular frequency of the 
transient WG mode radiation field increases as a function of a time. 
      In this study, we derive the TD asymptotic solution for the surface diffracted ray (SD ray) 
excited by the edge and shed from the convex portion of a thin cylindrically curved conducting open 
surface. It is assumed that the transient SD ray is excited by a high-frequency pulse source with a 
truncated Gaussian time variation [4]. The validity of the TD asymptotic solution derived here is 
confirmed by comparing with the reference solution calculated numerically. We clarify that the 
instantaneous angular frequency of the transient SD ray decreases as a function of a time. 
 
2. Formulation and Time-Domain Asymptotic Solution 
2.1 Formulation and Integral Representation for Transient SD Ray 
      We have shown in Fig.1 the thin cylindrically curved conducting open surface ),( ABφa  defined 
by ,0, ABφφρ ≤≤= a  the two-dimensional coordinate systems ),,( φρ   and ),,( yx ),,( ψr  and the 
SD ray excited by the edge A. The TM-type plane wave (magnetic field is directed 
normal to the plane of incidence) is incident on the cylindrically curved conducting surface from the 

PAA 1 →

x−  direction. The creeping wave (CW) excited by the edge A propagates along the convex surface 
and is diffracted at the surface diffraction point 1A  )).( 21 LAA( =  Then at the point  the 
cylindrical wave leaves the convex surface tangentially and reaches the observation point P 
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      The th order FD-SD ray  )raySD(FD l− ),((),( ,SD,SD ωω ll ≡ru u  hereafter the position vector 

),( ψr=r  is dropped) with total propagation distance 321 LLLL ++=  may be expressed by [5]: 
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where  denotes the distance from the reference point Q  to the edge A. The term  )A(1 →=QL



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)(ωαl  denotes the th order attenuation constant, and c  and l )()(,CW cc <ωl  denote, respectively, 
the speed of light and the phase velocity of .CWFD l−  Notation lσ  in Eq. (3) is the l th zero of the 
Airy function derivative ).0)(,i.e.( =−′ lσiA  The time factor )(exp tiω−  is suppressed. 
      We assume that the transient  is excited by the truncated Gaussian-type modulated 
pulse source [4] defined by 
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where 0ω  denotes the central angular frequency, and  and  are constant parameters. The 
frequency spectrum 
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Figs. 2(a) and 2(b) show respectively the real part of pulse source  in Eq. (4) and the frequency 
spectrum 

)(ts
)(ωS  in Eq. (5). The pulse source  defined in Eq. (4) becomes an ultra-wideband 

(UWB) pulse source when d  satisfies 
)(ts

dd ≤  where d  is the value of d  such that the fractional 
bandwidth of )(ωS  is 25.0 % [6]. 
      The TM-type transient  raySDl ))((),( ,SD,SD tyty ll ≡r  excited by a Gaussian-type modulated 
pulse source  in Eq. (4) can be derived from the following inverse Fourier transform [4]: )(ts
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2.2 Time-Domain Asymptotic Solution for Edge-Surface Diffracted Ray 
      In the integral  in Eq. (6), we assume that the functions )(,SD ty l )(ωαl  and )(ωlT  in the 
integrand may be approximated by 

.)(or)()(where,)(
2

)(
)()()(~)( 0

2
0

000 ωωαωω
ωω

ωωωωω lllllll Thhhhh =′′
−

+′−+           (9) 

Substituting the 2nd order approximation in Eq. (9) into Eq. (6) and applying the saddle point 
technique [4], one may obtain the following TD asymptotic solution for the  :raySDl
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Fig.1 Edge-surface diffracted ray excited by
edge A of a thin cylindrically curved con-
ducting open surface and two-dimensional co-
ordinate systems ),,( φρ   and ),,( yx ).,( ψr  

 (a)  in Eq. (4)         (b))(ts )(ωS  in Eq. (5) 
Fig.2 Gaussian-type modulated UWB pulse  
source. Numerical parameters: ×= 799.10ω  

s,103.2 11−×,s105.1,rad/s10 10
0

11 − =×= dt  
.s1075.6 11−×=d  

1 2 3
ω x10-11 [rad/s]

0 

0 
1 

0.
5 

|S
(ω

 )|
x 

10
10

 edge-surface 
diffracted ray 

A 1 

incident 
plane wave 

•

•

•

ABφφ =

• ),(P ψr

x

y 

O 

ψ

edge A 

edge B 

r 

O′

creeping wave 

•
Q L 1

L 2 

L 3 

a=ρ

0.1 0.2 0.30
time [n s]

-
1

1 
0 

R
e[

s(
t)]

 



,),,()()()3(
2
ˆ

1
4

)()( 03
2

,P,P
22

20 ωξηγγωα lllll
ll

ll tttttaLtf +−⎥⎦
⎤

⎢⎣
⎡ −−+−−=                           (13) 

where   and  denote respectively the amplitude term, the phase term, and 
the envelope shape of the  and 
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raySDTD l− ,3,2,1,),,( 0 =ntn ωξ l etc. in the above equations are 
defined as follows: 
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Here, l,sω  is the saddle point of the integrand in Eq. (6) given by 
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      It is clarified from Eq. (19) that the transient   constructing the transient lSD  
ray  propagates with the group velocity l,gv  in Eq. (19) faster than the phase velocity 
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c  (see Eq. (2)) and that the transient incident wave  and the transient cylindrical 
wave  constructing  propagate with the group velocity coincident with the speed 
of light  It is also apparent from Eq. (10) that the transient  takes the maximum value 
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      The instantaneous angular frequency )(,SD tlω  of the  may be derived analytically 
from (see Eq. (12)) 
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3. Numerical Results and Discussions 
 
      In order to confirm the validity of the TD asymptotic solution derived in Section 2, we calculate 
the TM-type lowest order transient  )raySD 1 1.,i.e( =l  excited by the truncated Gaussian-type 
modulated UWB pulse source  given Fig.2(a). )(ts
      In Fig.3, we have shown the instantaneous angular frequency )(1,SD tω  of  in Eq. (6) vs. 
time 

)(1,SD ty
t  curves. It is confirmed that the asymptotic solution (      ) in Eq. (21) decreases as the 

function of time t  and agrees well with the reference solution ( ••• ) calculated numerically from 
Eq. (6) in the period including ns44.24ns32.24 ≤≤ t ns.387.241,p == tt

01,P ttt
 We have also shown the 

instantaneous angular frequency of the pulse source s )( +−  (        ) in Eq. (4). The instantane-
ous angular frequency (        ) of )( 01,P ttts +−  is kept constant at the central angular frequency .0ω  
      In Fig.4, we have shown the response waveform of 1,SD  in Eq. (6). It is observed that the 
asymptotic solution (        ) calculated from Eq. (10) agrees excellently with the reference solution  

)(ty



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
( ) obtained by applying the numerical integration in Eq. (6) in the period  

 We have also shown in Fig.4 the pulse source 
•••

ns.
51.24ns24.24 ≤≤ t

)].(Re[ 01,P1max, ttts +−γ  (        ) normalized by 
the maximum value .1max,γ  It is confirmed that the instantaneous angular frequencies )(1,SD tω  of 

(        ) and the reference solution  ()t(1,SDy ••• ) decrease continuously as the function of time t  in 
the period  This phenomenon agrees with the result shown in Fig.3. ns.44ns32.24 .24≤≤ t
 
4. Conclusion 
 
      In this study, we have derived the time-domain asymptotic solution for the edge-surface 
diffracted ray excited by the high-frequency pulse source. The validity of the asymptotic solution 
derived here has been confirmed by comparing with the numerical reference solution. 
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Fig.3 Instantaneous angular frequency
1,SD )(tω  vs. time t curves.          : asymptotic

solution in Eq. (21),  ••• : reference solution
obtained numerically from Eq. (6),        :
pulse source s  Numerical pa-
rameters: 

).( tt −
,)AB =

01,P t+
m5.0( .),deg160,( φa

.).deg20P
 obser-

vation point ,m),( 0.6(=ψr  

Fig.4 Response waveform of 1,SDy        :
asymptotic solution in Eq. (10),  • : refe-
rence solution calculated by numerical inte-
gration in Eq. (6), and          : normalized pulse
source 01,P1max,

).(t
••

].)(Re[ ttts +−γ  Numerical pa-
rameters: same as those given in Fig.3. 
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