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Abstract 
 

Electromagnetic power transmission of a magnetic current loop into a wire-penetrated aperture 
is investigated. We use the superposition principle, the associated Weber transform, and the mode-
matching method to constitute a set of simultaneous equations. Our theoretical model for a wire-
penetration is useful for the analysis of EMI and its applications.  
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1. Introduction 
 

A wire-penetrating aperture is a canonical model that can be used to represent locally a via 
hole in a printed circuit board (PCB), an antenna feed or cable systems linking different equipments. 
While there have been many works done in the area of a wire-penetrating aperture [1] – [4], they all 
assumed  a small aperture, a thin wire or an infinitesimally thin screen and their analysis methods 
are inherently based on the numerically intensive integral equation. Recently, we have obtained a 
numerically efficient series solution for the field penetration into a wire-penetrated aperture when 
excited by an electrical current loop [5]. The present paper is a continuation of [5] to obtain a fast 
convergent series solution for the transmission by a magnetic current loop. We will use the mode-
matching, the superposition principle, as used in [5], and the associated Weber transform [6], which 
is somewhat different from the original one. A brief theoretical summary is given and the power 
transmission characteristics of a wire-penetrating aperture are investigated.  
 
2. Theory 
 

Consider an infinitely long conducting cylinder piercing a circular aperture in a thick 
conducting screen. The geometry of the problem is shown in Fig. 1. The cylindrical coordinates 
( , , )zρ φ are used for analysis and a time-harmonic factor i te ω− is suppressed throughout. Region (I) 
is the upper half-space ( 0,z aρ> > ), region (II) is an annular aperture (radii: a  and b , depth: d ), 
and region (III) is the lower half-space ( 0,z aρ< > ). All regions are assumed to be air with the 

wavenumber 0 0k ω μ ε= . A magnetic ring current source 0
ˆ( ) ( ) ( )M r M z zφ δ ρ ρ δ′ ′= − − is 

placed in region (I), where ( )δ ⋅ is the Dirac delta function. Due to the azimuthal symmetry, only the 
TMz modes are excited [7] for this case. The total field in region (I) consists of the primary and 
secondary components based on the superposition principle [5]. The primary magnetic field pHφ  

resulting from M is  
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Figure 1: Magnetic ring current source around a long cylinder penetrating a circular aperture. 

 

where 1 1 0 1 0( ) ( ) ( ) ( ) ( )Z J N a N J aκρ κρ κ κρ κ= − and 2 2kκ ζ= − . The functions ( )pJ ⋅ and 

( )pN ⋅  represent the Bessel functions of the first and second kinds of order p , respectively. The 

function (1) ( )pH ⋅ is the Hankel function of the first kind of order p . In (1), the notation ρ< ( ρ> ) 

designates the smaller (larger) of ρ and ρ′ . Based on the associated Weber transform [6], the 
secondary magnetic fields in region (I) and (III) take the form of 
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Note that , ( )I IIIHφ ζ  is the associated Weber transform defined by 

, ,
1( ) ( ,0) ( )I III I III

a
H H Z dφ φζ ρ ζρ ρ ρ

∞
= ∫ . In region (II), the magnetic field can be represented in 

terms of the discrete mode summation 
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where 2 2
m mkκ γ= −  and 
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and the eigenvalue mγ  is determined by 0
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obtain the unknown modal coefficients aα  and bα  ( 0,1,2,α = ), we enforce the boundary 



conditions on the field continuities from regions (I) through (III). The tangential Eρ  component 
continuity at 0z =  gives   
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where  
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Then the tangential Hφ  continuity at 0z =  yields a set of simultaneous equation for aα  and bα . It 

is necessary to obtain another set of simultaneous equation for aα  and bα  by using the boundary 
condition at z d= − . After truncating an infinite series up to N terms, it is trivial to solve the 
simultaneous equations for the unknown modal coefficients by matrix inversion. 
 
3. Calculations 
 

Fig. 2 displays the two-dimensional curves of the magnitude of Hφ  field with several cuts. In 
order to check the validity of our theory, the numerical results are compared with the COMSOL 
Multiphysics results. Our computation results are in good agreement with the data of COMSOL. 
Using 5N = , we performed computations throughout this section to assure reasonable accuracy. 
Fig. 3. shows the dependence of the power transmission coefficients ( /tran incT P P= ) on the plane 
thickness /d λ . It clearly reveals undulating characteristics with the wavelength λ . Unlike the 
electric current source excitation [5], T  does not approach 0  as the aperture size becomes smaller 
since the coaxial region (II) can support the TEM mode.  

 

 
 

Figure 2: Magnitude of total magnetic field Hφ  for a magnetic loop ( 0 1M = ) located at 

1.25ρ λ′ = , 0.5z λ′ =  with 1a λ= , 1.5b λ= , 0.8d λ= , and 5N = . 



 
 

Figure 3: Transmission coefficients T versus /d λ  when 1a λ= , 1.25ρ λ′ = , 0.5z λ′ =  and 

0 1M =   
 

4. Conclusion 
 

Electromagnetic power penetration into a wire-penetrating aperture has been discussed by 
using the associated Weber transform, the superposition principle and the mode-matching method. 
A magnetic current loop was assumed as an excitation and the effects of the plane thickness and 
aperture size on the transmission coefficients were also investigated. The solution was formulated in 
terms of the fast convergent series form. Our formulation can be further applied to the practical 
situations such as the EMI calculation associated with via holes on a PCB. 
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