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Abstract
Particle swarm optimization (PSO) is applied to an inverse scattering problem that es-

timates the dielectric constant and the radius of a circular cylinder from scattered waves. A
modification of PSO is introduced in order to reduce computational complexity when multiple-
frequency data is available.
Keywords: inverse scattering problem, homogeneous dielectric circular cylinder, electromag-
netic imaging, particle swarm optimization

1. Introduction
Various techniques have been studied for an inverse scattering problem to reconstruct an

object from the scattered waves. Main difficulties of the problems are in the ill-posed and the
nonlinear relations between the scattered waves and the object. An approach to reduce the
ill-posed property has been studied by the author[1]; while much careful handling should be
needed for the nonlinear property. For a strongly inhomogeneous object the problem reduces an
optimization problem to minimize a cost function that relates differences between the measured
and calculated scattered-waves. It is difficult in general to search for the minimum point of the
cost function in terms of a gradient based optimization method because of existence of local
minimum points.

Particle swarm optimization (PSO) is a stochastic nonlinear optimization algorithm,
which is inspired by the social behavior of a bird flock or fish school. It has been applied
to electromagnetic problems[2, 3], and is attractive because of its simplicity.

In this paper, we will apply PSO to a simple inverse scattering problem that estimate the
dielectric constant and the radius of a homogeneous circular cylinder from scattered waves[4].
In inverse scattering problems, it is likely that data of different measurements is utilized in
order to obtain detailed information of the object. In those cases it is natural that we should
introduce a cost function as the sum of squared errors of the different measurement. It takes
increased time to evaluate the summed cost function. In order to save the time a modification
of PSO is also introduced.

2. Formulation
2.1. Scattering by a homogeneous dielectric circular cylinder

Let us begin with review of scattering problem of a homogeneous circular cylinder located
at the origin in free space under E-wave time-harmonic excitations of the time factor exp(jωt).
The geometry is shown in Fig. 1. The relative dielectric constant and the radius of the cylinder
are denoted by εr and r, respectively. When a plane wave propagating in the θ direction is
incident to the cylinder, the scattered wave in the far-field is expressed as
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where k is the wavenumber and ūs(ϕ) is the far-field (complex) pattern of scattered wave, which
is represented as
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The coefficient βm is calculated from εr and r according to
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where Jm and H
(2)
m are the Bessel function and the Hankel function of the second kind, respec-

tively.

2.2. Inverse Scattering Problem
Let us consider reconstruction of a homogeneous dielectric circular cylinder from the

scattered waves. The center of the circular cylinder is fixed to the origin for simplicity; i.e.,
θ = 0 is used because of the symmetry and only two parameter, εr and r, shall be recovered.

In order to recast the inverse problem to an optimization problem let us introduce the
mean square error as

Ω(i)(εr, r) =
1

2π

∫ 2π

0

∣∣∣ū(i)s (ϕ; εr, r)− ˜̄u(i)s (ϕ)
∣∣∣2 dϕ (4)

where ūs and ˜̄us denote the measured and the calculated far-field patterns, respectively, and the
superscript (i) means that the wavenumber k = ki is used. Substituting Eq. (2) into Eq. (4),
we can obtain another form as
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where M is a large number and βm and β̃m denote the measured and the calculated coefficients
of far-field patterns, respectively. Equation (5) is suitable for computation and is used as the
cost function in the following numerical analysis.

2.3. Application of Particle Swarm Optimization
In PSO, multiple particles(candidate points) change their positions(the coordinates) in

solution space according to their own experience and experience of the swarm. In order to apply
PSO to the inverse problem that minimizes the cost function indicated in Eq. (5) let us set a
swarm of P particles whose position is characterized as x = (εr, r).

In the basic PSO the velocity of pth particle is updated according to

v(t+1)
p = wv(t)

p + c1r1(p
(t)
p − x(t)

p ) + c2r2(g
(t) − x(t)

p ) (6)

where t is the iteration number, p
(t)
p , which is called pbest, is the best solution which pth particle

personally encountered, g(t), which is called gbest, is the best solution which the entire swarm
encountered, w is called the inertial weight, c1, c2 are scaling factors, and r1, r2 are random
numbers uniformly distributed in [0, 1]. The position of pth particle xp is updated (assuming
the unit time is elapsed per iteration) according to

x(t+1)
p = x(t)

p + v(t+1)
p . (7)

Each particle moves along its original course to some extent and is stochastically pulled to pbest
and gbest.

Let us consider the case that scattering data of two different frequencies is available. A
method in this case is to minimize the cost function Ω(1) + Ω(2). The summed cost function
would reduce rises and falls, emphasize its global minimum point, and facilitate the search for
the global minimum point. There probably remain local minimum points, however, and time
to evaluate the cost function is increased. As another method we introduce a novel PSO, which
we call a split PSO in this paper, where the particles are split into two groups. The particles
of the first group evaluate Ω(1) and those of the other group do Ω(2), moving according to

v(k+1)
p = wv(t)

p + c1r1(p
(t)
p −x(t)

p ) + c21r21(g
(t)
1 −x(t)

p ) + c22r22(g
(t)
2 −x(t)

p ) (8)

instead of Eq. (6) where c21, c22 are scaling factors, r21, r22 are random numbers uniformly

distributed in [0, 1], and g
(t)
i is the best solution of Ω(i) that the ith group encountered.

The inverse algorithm is summarized as follows:

Step 1: Set the initial position of each particles by randomly selecting a value with uniform
probability over the solution space. Similarly, set each dimension of the initial velocity of



each particles by a random value in the range [−V, V ]. Evaluate the cost function according
to the position of particles and set pbest and gbest.

Step 2: Update the velocity of each particle by Eq.(6) or (8) and update position by Eq.(7).
Evaluate the cost function at the updated positions and update the pbest and the gbest. The
particles are allowed to move out of the solution space, however the particle outside the
solution space are not evaluated for cost function; namely, invisible walls[2] are assumed as
the boundary condition. This step is repeated until a termination criterion is satisfied.

3. Numerical Analysis
Let us examine a reconstruction of a lossless circular cylinder of εr = 3 and r/λ = 2

where λ is a wavelength. The solution space is set to 1 ≤ εr ≤ 5，0.1 ≤ r/λ ≤ 4.1 and V
is set to be equal to the dynamic range of the solution space, i.e., 4. The parameters are set
to P = 10, w = 0.4, c1 = c2 = 2 and c21 = c22 = 1. If all the dimensions of the velocity of
particles and of difference between the positions of particles and gbest are less than ϵ = 0.01 or
the iteration number becomes larger than Imax = 200, the minimization process is terminated.
The scattering data of k1 = 2π/λ and/or k2 = π/λ is assumed to be available.

At first let us analysis the case that one frequency of k1 or k2 is available. Figures 2 and 3
show the contours of Ω(1) and Ω(2) and behaviors of particles searching for the minimum point
according to the basic PSO, respectively. We see that the search for the minimum point fails
in Ω(1) and succeeds in Ω(2).

Next let us examine the case that both frequencies are available. Figure 4 shows a
movement of ten particles which have successfully searched for the minimum point of Ω(1)+Ω(2)

according to the basic PSO. The rises and falls of Ω(1)+Ω(2) seem to be dull compared with Ω(1)

but there remain local minimum points. Figure 5 shows a movement of particles according to
the split PSO, where each half of particles has searched for the minimum point of Ω(1) or Ω(2),
respectively. Five different runs are executed for the same cylinder. Figures 6 and 7 respectively
show that the estimated parameters and the value of the cost functions change similarly as the
number of function evaluations are increased.

As the last analysis a hundred runs are executed for each of three different cylinders in
the case that two frequencies is available. Table 1 shows the number of successfully recovering
the parameters for each cylinder. We see from the table that the split PSO is slightly more
successful than the basic one in searching for the global minimum point. Note that the split
PSO requires the only one cost function of Ω(1) or Ω(2) to be evaluated for each particle. If the
number of particles is increased to P = 20 we can see a great improvement of the possibility of
successful search.

4. Conclusion
In this paper, we have considered a simple inverse scattering problem using the split PSO

which simultaneously minimize two cost functions. The split PSO saves computational cost
and tends to reduce traps at local minimum points. Analysis of characteristics of the PSO in
details and its application to more complex problems which have many unknown parameters
are subjects for future studies.
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Figure 1: Geometry of the scat-
tering problem

Figure 2: Cost function Ω(1),
whose minimum point is
searched for by the basic PSO.

Figure 3: Cost function Ω(2),
whose minimum point is
searched for by the basic PSO.

Figure 4: Cost function Ω(1) +
Ω(2), whose minimum point is
searched for by the basic PSO.

Figure 5: Cost functions Ω(1) and Ω(2), whose minimum points
are simultaneously searched for by the split PSO.
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Figure 6: Estimated dielectric constant and
radius of the cylinder versus the number of
function evaluations. The results of five runs
are superposed.
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Figure 7: Value of the cost functions versus
the number of function evaluations. The re-
sults of five runs are superposed.

Table 1: The number of successful estimation of 100 runs.

the number of particles P = 10 P = 10 P = 20
PSO type basic split split

cylinder 1: εr = 3, r = 2 56 79 96
cylinder 2: εr = 2, r = 1 80 84 98
cylinder 3: εr = 4, r = 3 53 50 79


